
I AD-A09 260 IBM FEDERAL SYSTEMS DIV OWEBO N Y F/S 9/2
MIL-STD-1750 CERTIFICATION STUDY.{U)
FEB 80 M L KUSHNER. 0 C REISIGER, W J TRACZ F33657-79-M-0858

UNCLASSIFIED IBM-6176175A NL

I *uumuuuuinoE~mhhmhEmhhI-
*llnlnnunlin.

LEVEL> 7)

MIL-STD-1750 CERTIFICATION STUDY

CONTRACT NO.: F33657-79-M-0858

FINAL REPORT

IBM NO.: 6176175A

Lii [,~DIST ON STATMAENT'A

Approved for public robease;
LDiitr.bution Unphtited

~m m m

mm m

- m - -m

--- -" Federal Systems Division, Owego, New York

81 5 19 ()-8

U NCLAJS IF IEl)
SECURITY CLASSIFICATION OF TIS PAGE (When, Dwel nlwercdflV'' ,~. Q.

REPOT DCUMETATON PGEREAD INSTRUCTIONS
REPOT DOUMETA~rON PGE E1'ORE COMPLETING I-ORM

1. REPORT NUM13ER 2GOVT ACCESSION NO. 3 CIPIENT'S CATALOG NUMBER

4. TITLE (a.nd Subtuil) 5. t46-AERIOD COVERED

Y~INAI. ;,!.PMT.
~ AL-TD17,0 CERTIFICATION STUDY. ID3Se 79 - 29 Fe

6, Vr1-.M~ M, T wrIorUMBE91

6176175A
4-. Aj.T h 0Rj s)8 CONTRACT OR GRANT NUMBER(I)

M. L, KuhnerL. A. White
D. C ReiigerF33657-7-9-M-6'58.'

9. PERFORMING ORGANIZATION NAME AND AGGRPESS 10. PROGRAM ELEMENT. PROJECT, TASK

International Business Machines Corp. AE OKUI UBR

Federal Systems Division
Owego, NY 13827

1 1 CONTROLLING OFPiCE NAME AND ADDRESS 12. 1 EPORT DATE

ASD/XRE ' 29 Feb 18,0
WPTAFP, O11 45433 -HUSE-0 *4A" S

257
14, MONITORING AGENCY NAME & ADORESS~if differ',a from C-~r,',lling Offi-e) 15 SECURITY CLASS. (of ?h,s *ep.rt)

ASD/ENASD .~UNCLASS IFIED
'APAFB, 011 4543qi T.-- DECASIFCATIONDONRDG

.... ~ ,SCH EDU LE

16. DISTRIBUTION STATEMENT (of thi's R~ep.rt)

17. DISTRIBUTION ST ATEMENT 1.l the I'tstm~'d , llock -10, it different from, Report)

V. V

18. SUPPLEMENTARY NOTES ~

19. KEY WORDS (Continue or' reverse side if necessary and Identifv by block number)

Instruction Set Architecture
MIL-STD-1750
Computer Architecture Verification
Computer Testing

2O.y BSTRACT (Continue on reverse side If necessary and Identify by block number)

This work Presents an Investigation of methods of verifying computers to an
Instruction Set Architectures and recommends a method suitable for Air Force
use to verify vendor produced implementations of MIL-STD-1750.

DD I AN7 1473 EDITION OF I NOV 65 IS OBSOLETE UCASFE .

SECURITY CLASSIFICATION OF THIS PAGE (Whsen Dae Entored)

SECURITY CLASSIFICATION OF THIS PAGE047hmi Date Rnfoted)

SECUhRITY' CL A5$IFICATIC% OF ~ *

S - -

------- '.AcesiPWr Pot -

DTIC T':,

IUDJ 'TI. ,. "

MIL-STD-1750 CETIPICA'IICV STUDY

CONTRACT NO.: F33657-79-!q-0858

FINALPEOR

February 29, 1980

IBM NO.: 6176175A

Approved BY:
J. C. Hloler,
Manager, Advanced Computer Applications

Prepared By: M. L. Kushner, Team Leader, Advanced Computer Applications
D. C. Reisiger, Advanced Computer Applications
W. J. Tracz, Software Development
L. A. White, System Test Technology

Appru~v(d c-reue

iz

E176175A FINAL FEPCE1 letruary 29, 1980

TABLE OF CONTENTS

_ArAgraph Title

1.0 INTRODUCTION AND SUMMARY 1-1

2.0 SCOPE OF STUDY 2-
2.1 STUDY ACTIVITIES 2-1
2.2 PERSPECTIVE 2-2
2.2.1 Architecture Verificaticn 2-2
2.2.2 Certification 2-3
2.2.3 Architecture Specification... : : : : : 2-3
2.2.4 Further Refinements to MIL-STD-1750 2-4
2.2.5 Industry Activities 2-5
2.3 AIR FORCE RESPONSIBILITIES 2-5
2.4 STUDY GROUND RULES 2-6

3.0 DEFINITIONS 3-1
3.1 COMPLETENESS.3-1

-.2 COVERAGE 3-1
3.3 CONFIDENCE3-2
3.4 QUALITY 3-2
3.5 SECOND-ORDER EFFECTS 3-3
3.6 ACCEPTANCE TEST PROGRA 3-3
3.7 ARCHITECTURAL VERIFICATICN PRCGAM 3-3
3.8 DIAGNOSTIC PROGRAM3-3
3.9 FUNCTIONAL TEST PROGRAM 3-4
3.10 COMPUTER HARDWARE rESCRIPTICF LANGUAGES (CHtI) . 3-4
3.11 CERTIFICATICN PROCESS VERSUS VEPIFICATICN PFCGRAM . . . 3-4

4.0 STUD! METHODOLOGY4-1
4.1 GCALS OF THIS STUDY!......................4-1
4.2 THE TRADE-OFF APPROACH 4-3
4o3 DATA COLLECTICV 4-4
4.3.1 Literature Search 4-5
4.3.2 Interviews and Site Visits . . . , 4-5
4.3.3 Engineering Change and Scftuare Va idation Cost Data
Collection 4-5

4.3.4 Internal Data Gathering 4-7
4.3.5 Miscellaneous Trips 4-7
4.4 EATA ANALYSIS 4-7

E.0 COST MODEL 5-1
_.1 CCSTS TO SEAFAC' 5-1
5.1.1 Impact to $EAFAC Resources5-1
E.1.2 Time Reguircl to Perform Validation5-2
5.1.3 Non-Recurring Start-Up Costs 5-2
5.1.4 Recurring Costs 5-2
5.2 QUALITY AND VALIDATICV CCSIS 5-2
!.2.1 Reasons for Considering Quality o 5-4
5.2.1.1 Quality Measurement 5-6
5.2.1.2 Engineering Changes and Architectural Discrepancies 5-7
5.2.1.3 Estimating the Quality - Vo.lidation Cost
Relationship 5-9

ii

6176175A FINAL REPCRI February 29, 1980

TABLE CF CCRnEVIS

araoraph Tiile

!.2.1.4 Objections to the Quality/Softuare Validation Cost
Approach....... 5-12

5.3 PROJECTION OF THE TCTAt 1;11BE; FUCITChI
DISCREPANCIES 5-12

6.0 VERIFICATION APPROACHES 6-1
6.1 AN/AYK-15A ACCEPTANCE TEST PFCGEI.. 6-1
6.1.1 Description 6-1
6.1.1.1 Block Diagram 6-2
6.1.2 Experience 6-3
E.1.3 hardware Resources 6-3
6.1.4 Software Resources6-3
6.1.5 Personnel 6-4
6.1.6 Observations and Applicability to MIL-STfl-1750 . . 6-4
6.2 RANDOM INSTRUCTIONS 6-5
6.2.1 Description 6-5
6.2.1.1 Block Diagram 6-5
6.2.2 Experience 6-6
6.2.3 hardware Resources6-7
6.2.4 Software Resources6-7
6.2.5 Perscnnel 6-7
6.2.6 Observations and Applicability to MIL-STD-1750 . .. 6-7
6.3 ANALYTICAL APPROAC 6-9
6.3.1 Description 6-9
6.3.1.1 Example .**........................... *6-11
6.3.1.2 Functional Diagram 6-13
6.3.2 Sxperience 6-13
6.3.3 Hardware Resources 6-13
6.3.4 Software Resources 6-13
6.3.5 Personnel 6-13
E.3.6 Observations and Applicatility to *IL-STD-1750 . 6-13
6.4 ARCHITECTURAL VERIFICATICN PFCGEAM - SYSTEM- 160/370 6-15
6.4.1 Desoription 6-15
6.4.1.1 Block Diagram 6-16
6.4.2 Experience 6-16
6.4.3 Hardware Resources 6-16
6.4.4 Software Resources 6-17
6.4.5 Personnel 6-17
6.4.6 Observations and Applicability to BIL-STD-1750 . . . 6-17
6.5 DIAGNOSTIC 6-19
6.5.1 Description 6-19
6.!.1.1 Block Diagram....... 6-20
6.5.2 Experience 6-20
E.5.3 Hardware Resources 6-20
6.5.4 Software Resources 6-21
6.5.5 Personnel 6-21
6.5.6 Observations and Applicability to MIL-STD-1750 . . . 6-21
6.6 FUNCTIONAL TEST PRCGRAM 6-23
6.6.1 Description 6-23
6.6.1.1 Block Diagram 6-24

iii

61761751 FINAL REPCP Fekruary 29, 1980

TABIE CF CCNIEIIS

_1.21.2-m a r h T it le El.q

6.6.2 Experience 6-24
6.E.3 Hardware Resources 6-24
6.6.4 Software Resources... 6-25
6.6.5 Personnel 6-25
6.6.6 Observations and Applicability to MIL-ST-175; 6-25
6.7 INSTEUCTION SET PROCESSOR 6-27
6.7.1 Description 6-27
6.7.1.1 Block Diagram 6-29
6.7.2 Experience 6-29
6.7.3 Hardware Resources 6-29
6.7.4 Software Resources 6-30
6.7.5 Personnel 6-30
6.7.6 Observations and Applicability to MIL-STr-;750 . . . 6-30
6.8 LOCKSTEP 6-32
6.8.1 Description 6-32
6.8.1.1 Block Diagram 6-33
6.8.2 Experience 6-33
6.8.3 Hardware Resources 6-34
6.8.4 Software Resources 6-34
6.8.5 Personnel 6-34
6.8.6 Observations and Applicability to MIL-ST-1750. 6-34
6.9 SUMMARY. 6-36
6.9.1 Pass/Fail Evaluation. 6-38

.7. oW I S S 7-

7.0 ARAI. ST S... 7-1

7.1 TEST CONFIGURAIION 7-1
7.1.1 Manual Test Configuratio.7-1
7.1.1.1 Description......7-1
7.1.1.2 Analysis....................... 3

7.1.2.1 Description 7-5
7.1.2.2 Analysis 7-6
7.1.2.3 Costs.. 7-8
7.1.3 Automatic Test Configuration..... 7-9
7.1.3.1 Description 7-9
7.1.3.2 Analysis.. 7-11
7. . 3 Co t .• 17.1.3.3 Costs..................................... 7-12

7.1.4 Comparison 7-12
7.2 TEST APPROACHES 7-15
7.2.1 kN/AYK-15A ATP in a Manual le st'Configuraticn . . . 7-18
7.2.1.1 Descripticn....... 7-18
7.2.1.2 Non-Recurring Start-Up Costs 7-18
7.2.1.3 Recurring Costs 7-19
7.2.1.4 Time Required to Perform Validation 7-19
7.2.1.5 Impact to SEAPAC Resources 7-20
7.2.2 AN/AYK-15A A7P in a Master/Slave Test Configuration 7-22
7.2.2.1 Description. 7-22
7.2.2.2 Non-Recurring Start-Up Costs 7-22
7.2.2.3 Recurring Costs 7-23

iv

E176175A FINAL REPCRE February 29, 1980

TABLE CF CCNTEITS

£a.ra a ra]h Title Pe

7.2.2.4 Time Required to Perform Validation 7-23
7.2.2.5 Impact to SEAFAC Rescurces 7-25
7.2.3 Random Instruction in a Manual Test Configuration 7-25
7.2.3.1 Description 7-25
7.2.3.2 Non-Recurring Start-Up Costs 7-26
7.2.3.3 Recurring Costs 7-27
7.2.3.4 Time Required to Perform Validation 7-27
7.2.3.5 Impact to SEAFAC Resources 7-28
7.2.4 Random Instruction in a Master/Slave Test
Configuration. 7-30
7.2.4.1 Description.................. 7-30
7.2.4.2 Non-Recurring Start-Up Costs 7-30
7.2.4.3 Recurring Costs 7-31
7.2.4.4 Time Required to Perform Validation 7-31
7.2.4.5 Impact to SEAFAC Resources 7-32
7.2.5 AVP In A Manual Test Configuration 7-34
7.2.5.1 Description 7-34
7.2.5.2 Non-Recurring Start-Ur Costs 7-34
7.2.5.3 Recurring Costs 7-35
7.2.5.4 Time Required to Perform Validation 7-35
7.2.5.5 Impact to SEAFAC Resources 7-36
7.2.6 AVP in a Master/Slave Test Configuration 7-38
7.2.6.1 Description 7-38
7.2.6.2 Non-Recurring Start-Up Costs 7-38
7.2.6.3 Recurring Costs 7-39
7.2.6.4 Time Required to Perform Validation 7-39
7.2.6.5 Impact to SEAFAC Resources 7-40
7.2.7 Diagnostic Modification in a Manual Test
Configuration 7-42

7.2.7.1 Description.7-42
7.2.7.2 Non-Recurring Start-Up Costs 7-42
7.2.7.3 Recurring Costs 7-43
7.2.7.4 Time Required to Perform Validation 7-43
7.2.7.5 Impact to SEAFAC Resources 7-43
7.2.8 Diagnostic Modification in a Master/Slave lest
Configuration 7-45
7.2.8.1 Description....... 7-45
7.2.8.2 Non-Recurring Start-Up Costs 7-45
7.2.8.3 Recurring Costs 7-46
7.2.8.4 Time Required to Perform Validation 7-46
7.2.8.5 Impact to SEAFAC Resources 7-47
7.2.9 FTP in a Manual Test Configuration 7-49
7.2.9.1 Description 7-49
7.2.9.2 Non-Recurring Start-Up Costs 7-49
7.2.9.3 Recurring Costs 7-
7.2.9.4 Time Required to Perform ;alidatin 7-50
7.2.9.5 Impact to SEAFAC Resources 7-51
7.2.10 FIP in a Master/Slave Test Configuration 7-53
7.2.10.1 Description 7-53
7.2.10.2 Non-Recurring Start-Up Costs 7-53

v!
____ -

E176175A FINAL PEPCET Fetruary 29, 1980

TABLE CF COVIEVIS

_aag rah Title Page

7.2.10.3 Recurring Costs 7-54
7.2.10.4 Time Required tc Perform Validation 7-54
7.2.10.5 Impact to SEAFAC Resources 7-55
7.2.11 Lockstep in a Manual Test Configuration 7-57
7.2.11.1 Description 7-57
7.2.11.2 Non-Recurring Start-p Costs 7-59
7.2.11.3 Recurring Costs 7-60
7.2.11.4 Time Required to Perforw Validation 7-60
7.2.11.5 Impact to SEAFAC Resources 7-61
7.2.12 Lockstep in a Master/Slave Configuration 7-63
7.2.12.1 Description 7-63
7.2.12.2 Non-Recurring Start-Up Costs 7-65
7.2.12.3 Recurring Costs 7-66
7.2.12.4 Time Required to Perform Validation 7-66
7.2.12.5 Impact to SEAFAC Resources 7-67
7.3 QUALITY OF VERIFICATION APPROACHES AND SOFTrIE*
VALIDATION COSTS 7-70

7.3.1 Data Collection 7-70
7.3.1.1 Data Collection for Step 1 7-70
7.3.1.2 Data Collection for Step 2 7-82
7.3.2 Analysis of Quality Data 7-85
7.3.2.1 Application of Correlaticn Coefficient ard Sgzared
Error Techniques to EC Data 7-86

7.3.2.2 Projections for Programs with Insufficient Data . 7-87
7.3.2.3 Estimation of the Cost vs Architectural
Discrepancies Relationship 7-88

7.3.2.4 Discussion of the Data Points for the Cost versus
Architectural Discrepancies Rplaticnship 7-90
7.3.2.5 Analysis of Quality rata for tifferent Verification
Methods 7-92

7.4 COPARISON.. 7-95
7.4.1 Test Configurations 7-98
7.4.2 Non-Recurring Start-Up Costs 7-98
7.4.3 Recurring Cost 7-99
7.4.4 Time Required to Perform Validation 7-99
7.4.5 Impact to SEAFAC Rescurces7-100
7.4.6 Quality Expectations for Different Verification
Methods 7-101

7.5 INIERPRETATION OF CCST iCDEL RESULIS7-103

8.O RECCBMENDATION 8-1
8.1 TWO LEVEL APPRCACH..8-1
E.1.1 Description 8-1
8.1.2 Rationale 8-2
E.2 IMPLEMENTATION CORSIDESAIICNS8-6

F.2.1 Phase 1 - AW/AYK-15A ATP Mcdification 8-6
8.2.2 Phase 2 - Random Instruction Generator Develcrment 8-14
E.2.2.1 Random Program Description 8-15
F.2.3 Costs 8-22
8.3 CERTIFICATION SCENARIO 8-25

i

6176175A FINAL REPCES Felruary 29, 1980

TABLE CF CCNTENTS

_a racraph Title Paq

8.4 IMPACTS TO MIL-STD-1750 8-25
8.4.1 MIL-STD-1750 ARCHITECTURE CCNTFCT 8-25
8.4.2 SUBSETS OF MIl-STD-1750 8-26
8.5 IMPACTS TO SEAFAC 8-27
E.5.1 Staffing 8-27
8.5.2 Physical Resources 8-28

S.0 EPILOGUE 9-1
9.1 OBSERVATINS/CCMEN;S 9-1

10.0 APPENDIX A - SEAFAC FACILITIES A-I

20.0 APPENDIX B - ESTIMATION OF THE TCTAL NUMBER OF AFCHITECTURAL
rISCREPANCIES B-i

20.1.1 The Decreasing Exponential rethcd B.......... -2
20.1.2 The Cumulative Data Approach. B-8
20.1 NORMALIZATION OF DATA BY MACHINE SIZE -1I4

-!C.0 APPENDIX C - PROGRAMS FOR ESTIMATIVG ICTAL NUMBEB CF
ARCHITECIURAL DISCREPANCIES C-I

40.0 APPENDIX D - ESTIMATES OF TOTAL ARCHITECTURAL DISCREPANCIES D-1

SO.0 APPENDIX E - CERTIFICATION INTERFACE ECCUMENT E-I
50.1 DESCRIPTION E-I

EC.0 APPENDIX F- BIBLICGRAPH. F-1

vii

Ilk -AL-,

E176175h FINAL REPCFI Fetruary 29, 1980

LI1ST CF FIGURES

Fioute Title Panet

4-1 Summary of Study Arproach 4-2
41-2 IBM Divisions Consulted 4-6

~- IVerification Cost as a Function of Quality of lest
... 5-3

!-2 ~ Quality-Belated Cost Components of Software'
Validation. 5-5

!- 3 Discovery of Architectural Discrepancies over
Machine Lifetime.....................5-8

r--4 Hardware Architectural Discrepancies Remaining
After Architecture Verification.........5-8

Validation Costs as a Function of Quality . . .5-10
6-1 AN/AYK-15A ATP Block Diagrar 6-3
E-2 Random Instructions Block Diagram...........6-6
E-3 IBM System/360 Architecture Nerificaticm Block

Diagram.........................6-16
E-41 Diagnostic Block Diagram 6-20

E-5FTP Block Diagram...................6-24
6-6 Isp Block Diagram....................6-29
E-7 Lockstep Block Diagram 6-33
'7-1 Manual Test Configuration 7-2

t-2 aster/Slave Test Configuration............7-7
'7-3 Automatic Test Configuratio 7-10
'7-4 ECs Since Sell-Off for the P-7 Program. 7-74
'7-5 ECs since Sell-Off for the B-52D SPN/GIAVS

Program.......................7-76
'7-6 ECs of Architectural Relevance for System/370

Model versus 'Time....................7-83
'7-7 Cost versus Architectural riscrepancies 7-88

e_1Program Hierarchy...................8-15
20-1 Expected Number of Architectural Discrepancies

203Over 'Time................................-2
20-2 Expected Data: ECs after Sell-off versus Time . . B-3

20-3ECs of Architectural Relevance for System,'370
Model versus Time- 6

20-4 ECs of Architectural Relevance for Systeu/370
Model versus Tlime and Transformed Data with Best
Fit Line- 6

20-rl _DCs of Architectural. Relevance for ;Tster/370
dodel versus "lime and Eest Fit Curve- 7

:C6Cumulative ECs Cver Time................-9
207Cumulative ECs Over Tlime, rata............-10

:0-8 C Minus the Cumulative EC 'Function..........-11
20-9Log Transform of Cumulative Lata.- 12

20-10 Squared Error Pepresentaticn. B-14

viii

E176175A FINAL REPCF1 Fehruary 29, 1980

LIST Of TAiIES

Tatle Title Page

E-1 Summary of Verification Approaches 6-37
E-2 eass/Fail Analysis 6-39
7-1 Test Elements 7-13
1-2 Cost Summary for the AV/AYK-15A*ATP Approach

Under A Manual Test Configuration 7-21
7-3 Cost Summary for the AN/AYF-15A ATP Approach

Under A Master/Slave Test Configuration . . 7-24
7-4 Cost Summary for the Ranecff Instructicr Approach

Under A Manual Test Corfiguration 7-29
7- 5 Cost Summary for the Randcm Instruction Approach

Under A Master/Slave Test Configuration . . 7-33
7-E Cost Summary for the AVP Approach Under A Manual

rest Configuration 7-37
7-7 Cost Summary for the AVP Approach Under A

Master/Slave Test Configuration 7-41
7-8 Cost Summary for the Diagnostic Approach Under A

Manual Test configuration" 7-
7-9 Cost Summary for the Diagnostic Approach Under A

Master/Slave Test Configuration 7-48
7-10 Cost Summary for the FTP Approach Under A Manual

Test Configuration 7-52
7-11 Cost Summary for the FTF Arproach Under A

Master/Slave Test Configuration 7-56
1-12 Cost Summary for the tockstep Approach Under A

danual Test Configuration 7-62
7-13 Cost Summary for the Lcckstep Approach Under a

laster/Slave Test Configuration 7-68
7-14 Hardware Upgrades 7-72
7-15 A-7 Program Data 7-73
7-16 B-52D SPN/GEANS Program Data 7-..........775
7-17 PAVE TACK Program Data 7-77
7-18 PAVE LOW Program data 7-78
7-19 PAVE TACK/VATS Program Data 7-79
7-20 E-111 Program Data 7-80
7-21 Operational Flight Program Pevalidatior Data . . 7-81
7-22 Hardware Change Size/Machine Size 7-84
1-23 Distribution of ECs 7-85
7-24 Estimate of Total Architectural Discrepancies 7-87
7-2! Summary of Architectural Discrepancy ard

Revalidation Cost Data 7-89
7-26 Architectural Discrepancies Data for Different

Verificaticn Methods 7-92
7-27 Comparison Summary 7-96
7-28 Cost Comparison 7-97
8-1 MIL-STD-1750 Applicability of ATP Subtests 8-7
20-1 ECs of Architectural Relevance From A System/370

Model B-5

a ix

E116175PR FINRL PEPCF7 Pekruary 29, 1980

6176175A FINAL REPORT February 29, 1980

1.0 INTRODUCTION SUMMARY

The Air Force's approach to solving the computer proliferation problem
by specification of a standard instruction set architecture has great
potential for reducing software development and maintenance costs
while simultaneously capturing the benefits of technology infusion.
Realization of this potential can only be achieved, however, if
different implementations of MIL-STD-1750 do, in fact, precisely
represent the architecture. The importance of rigorous verification
that these representations are correct cannot be overstated. For
t1tese reasons, IBM considers the successful implementation of a
t.IL-STD-1750 certification facility to be a critically important
element of the Air Force's computer architecture standardization
effort. This study has been undertaken to assist in the
ifplementation of that facility.

This study's purposes and goals follow:

" Investigate methods of verifying computers to an Instruction
Set Architecture and recommend a method suitable to SEAFAC
for certifying vendor produced implementations of
MIL-STD-1750.

* Make cost-effective use of existing SEAFAC resources.

" Strive for vendor/implementation independence.

" Recommend a verification approach based on a cost trade-off
analysis.

" Provide sufficient descriptive information about the
recommended approach so that the Air Force can:

- Plan future funding and personnel requirements.

Write specifications for hardware and software
necessary to support aprrcach.

Contract for (or develop internally) the necessary
facilities.

The Air Force has provided the following guidance regarding the
certification objectives:

1. The Air Force desires to maintain compatibility of support
software (this implies both assembler source code
compatibility as well as object code compatibility in what
is equivalent to the problem state).

2. The approach should address a spectrum of computers from the
microprocessor to the high performance stand-alone computer.

1- 1

61761751 FTNAL REPOP' February 29, 1980

3. The Air Force desires to maintain an open relationship with
vendors with regard to certification plans, programs and
procedures.

4. The MIL-STD-1750 Instruction Set Architecture User's Group
should be used as the vehicle for effecting changes to the
standard.

5. From a practical viewpoint, the certification process for
each machine should not exceed two weeks, based on an eight
hour day.

6. The Air Force does not desire to define a standard AGE
interface as an additional standard. However, it would be
acceptable to require scme minimum functional capability, a
common I/O interface, as well as a minimum memory
configuration to support verification.

7. Only one vendor will be certified at a time.

e. Recertification is not planmed. However, retesting may be
considered when operational problems are identified or when
errors or updates occur in the certification process.

This guidance forms a basic set of assumptions used in this
study..

This study investigates verification approaches. IBM has conducted a
literature search to identify any novel verification approaches and to
gather data from the public domain; the IBM Federal Systems Division
team members have visited other IBM locations to gather data about the
various approaches inside the corporation and have consulted with the
Owego experts concerned with verification.

This document examines the following verification approaches:

* Acceptance Test Program

- AN/AYK-15A

- ALAM

- User Oriented Micro Processor

* Random Instructions

* Analytical Research

* Architectural Verification Program - System 360/370

* Diagnostic

1-2

6176175A FINAL PEPORT February 29, 1980

* Functional Test Program

* Instruction Set Processor Specification

* Lockstep

The study methodology uses the following 3-step approach:

Step 1 Apply pass/fail criteria (i.e., feasibility) to each
approach.

Step 2 Measure each verification approach which survives the
pass/fail criteria for SEAFAC impact, time to perform a
verification test, non-recurring start-up costs,
recurring costs, and quality of the approach.

Step 3 Select the best approach under which SEAFAC may
implement the certification capability.

The recommendation of this study is a certification process which
invokes two verification phases to provide a superior means of
implementing the certification facility. The first phase uses a
deterministic verification program based upon modifications to the
AN/AYK-15A ATP. These modifications delete non-MIL-SID-1750 features
and add additional tests where required. It is followed by the second
phase in which randomly generated sequences of instructions are run on
a MIL-STD-1750 simulator and the machine under test: the results are
then compared to determine their validity.

The time estimate required to implement this certification process at
SEAFAC is a time period of a year and a half; the total cost estimate
for the certification process is $1,239,000 using 1979 dollars,
$70,000 man year rate, and other Air Force guidelines.

1-3

Aft -A&

6176175ht FINAL PEPOPT February 29, 1980

THIS PAGE IUTENTICNALLY LEFT BLANK

1-4e

- *

617617 A FINAL .EPCPr Fetruary 29, 1980

7.0 SCOPE OF STUDY

T.he objective of this study is to determine the methodologies and
identify the resources required to provide the Air Force with the
capability of verifying compliance and certifying vpndor produced
ccmputers to HrL-STD-1750. This study identifies plans, procedures,
tardware support items, support software items, interfaces, personnel,
and other resources required to provide ASr/ENASD Systems Engineering
hvionics Facility (SEAFAC) with the capability to determine computer
instruction set compliance to MIL-STD"-17'_O.

This study addresses various potential approaches to accomplish the
certification process, and the identification of hardware, software,
interface, personnel, and miscellaneous resources required to support
each approach. Each approach was evaluated considering the present
capabilities of the existing SEAFAC facility. The advantages and
disadvantages of each approach, and their cost impacts were lso
considered.

2.1 "UrY ACTIVITIES

!he following summarizes the program tasks undertaken during this
study:

Task 1.0 L1entif k;oach__ _.§ : Architecture verification
approaches were researched. Approaches used from inside IBM FSD
and IBM commercial were surveyed; the Acceptance Test Plan for
the &M/IYK-15A was included by direction of the Air Force; and a
survey oi the literature describing activities in the computer
industry was completed.
Task 2.0 4Ilyze oe (fg) Pesources: This task was

undertaken to understand the existing SEAFAC resources and
identify any newly required resources based on the verification
approaches.

Ta_ 3.0 i.e-O f Of Upoaches: This task was broken into
principally two sub-tasks. In the first sub-task pass/fail
criteria (such as feasibility) was applied to each of the
approaches. The approaches which passed were then analyzed
regarding their Non-Fecurring Start-Up costs, and Recurring costs
in order to select the best verification approach or combinations
of verification approaches.

a21 4.-0 Dev19 ! el_]of: A detailed plan for the
recommended approach was developed in this task in order to be
used as a guide for implementing the verification capability.
The plan includes detailed facility requirements and
configurations, a detailed sechanizaticn plan describing how
vendors will be able to attain certification, suggested

2-1

m____lr-.. , , -i-A &

(116175A FINAL PEPCPT February 29, 1980

organizational structures for effective control of the
certification, detailed designs and procedures to test each
function, and impacts to MIL-STD-1750 which pertained to its
testability.

_ask 5.0 Pogduce gtudl Reliv.erables: This task results in a
draft final report, a final briefing, and a final report at
completion of the study in accordance with the Statement of fork.

2.2 PERSPBCTIVE

7-he process of computer architecture verification, which is extremely
ccmplex for a single manufacturer, is further complicated for the Air
Force because the Air Force must deal with multiple manufacturers and
formally certify that a machine has passed the architecture
verification process.

2.2.1 Architecture Verification

'rhe task of architecture verification is to prove that a given
implementation of the architecture performs all functions specified,
and executes all combinations of those functions with clearly defined
results. This implies not only obtaining the desired results but also
ensuring that no other conditions except those specified are
performed.

Fcr example, MIL-STD-1750 states for single precision compare:

"The single precision derived operand, DC, is
compared to the contents of FA. Then, the
condition status, CS, is set based on whether the
contents of RA is less than, equal to, or greater
than the DO. The contents of FA are unchanged."

It is important to realize that statements like the above also imply
that a number of unstated conditions (e.g., other status bits,
registers, etc.) are unchanged. Verifying that unrelated conditions
are noi affected is as important as verifying expected results.

Items to be checked in each verification test include:

The function
Data patterns
All registers, both used and unused
All interrupts
Main Storage locations, both used and related
Condition codes set or unaffected
Error indicators

2-2

E176175A FINAL rEPOWT February 29, 1980

Order of occurrence of predicted events
Interference due to simultaneous I/O and/or interrupts

Each architectural verification method has associated with it a degree
of quality, which is a measure of hoy gocd that method is at finding
inconsistencies between the hardware implementation and the
architecture specification. This quality may be viewed from three
different perspectives:

1. Completeness

2. Coverage

3. Confidence

2.2.2 Certification

The act of conferring certification has associated with it certain
liabilities. It is important that the study consider the procedural
issues of certification so that these liabilities are minimized. Some
examples of these procedural issues follcw.

Ihile the ideal goal of certification is to ensure 100 percent
ccopliance with the specification, experience and common sense suggest
tkat.this cannot be obtained at a reasonable cost, (as is discussed
later). As a result, less than perfect verification must be accepted.

It is likely that the initial certification capability which is put in
place will be subject to improvements over time as experience is
gained. Because of a lack of maturity, the verification process as
first implemented may falsely indicate compliance and allow a
deviation to escape detection. Suppose that Machine A, which has been
granted certification, is later retested and found to be
non-representative of the architecture. It is reccmmended that a
process be put in place to document this variance and publish that
information to any potential user.

The architecture specification itself is not fixed for all time.
Bather, changes, corrections, and extensions will be made over time.
Again it is recommended that retesting with publication of the results
be required of all previously certified computers.

2.2.3 jrchitec~t2" 12cficatg1n

It is essential to have a complete, detailed, unambiguous
documentation of the architecture to ensure that a compatible
verification is possible for all implementations. This document must
specify the functions available for use in programming the computeL

2-3

E176175k FINAL REPCPT February 29, 1980

ircluding all significant side affects. It does not tell the hardware
designer what techniques or technologies to use in his/her
isplementation of the architecture. It may include Implementation
votes which describe the intentions behind certain operations or
functions and which may aid the designer in any hardware trade-off
decisions.

Typically this document includes:

Processor Structure

Main Storage
Addressable Registers
Instructions and Data Format
Addressing Modes
Expanded Addressing Technique
Machine Status
Interrupt System and Status Switching

Instruction Repertoire

Input/Output

Channels
limers
Discretes
I/0 Interrupts
I/O Instruction Repertoire

Protection Features

Multiprocessing Facilities

Multiprogramming Facilities

Security Features

Alternative Subset Implementation

Growth Provisions

2.2.4 Further Refinements to MIL-STD-17 O

'be Statement of Work in the Air Force's FFP indicates that the study
should be concerned with areas of MIL-STD-1750 which require further
definition because of testability impacts. Specifically, "The
ccntractor ... shall identify impacts on MIL-STD-1750 %hich pertain to
its testability."

Ar example of this type of architectural impact due to testability
considerations arises frcm the Lockstet testing approach, which will

2-4.

A.&--p~. -

E176175A FINAL FEPCPT Felruary 29, 1980

he discussed in detail in a later section. Basically, t-his method
requires that the computer have a bit in its Program Status Word (PSW)
wlich causes it to enter a trace mode. In the trace mode, an
instruction is executed and then the trace interrupt occurs. This
trace interrupt saves all the status of the computer in a status area
and loads a new PSW. Having a copy of the complete status of the
computer at the completion of each instruction executicn permits that
status to be compared with similar status from a certified computer
(that is, one that is certified as a member of the fazily). Thus, if
the LockStep testing approach is chosen, it would impact the
definition of MIL-STD-1750 hy requiring the definition of a trace
mode.

Specific refinements to MIL-STD-1750 will be covered in the
recommendation section.

2.2.5 IndustrX Activities

Computer development has multiple stages in which computer

verification is required:

1. As a bring-up tool by Engineers.

2. As a verification tool by Quality Assurance.

3. As a final box checkout by Manufacturing.

4. As a diagnostic check by Field Engineering.

Each area inside IBM was surveyed for their approach to verification
and how this could be applied to the Air Force's problem.

2.3 AIR FORCE RESPONSIBILITIES

The Air Force must provide complete, detailed, unambiguous
documentation of the architecture (MIL-STD-1750). This is reguired
because informal communication channels are difficult, unreliable, and
unmanageable within one manufacturer, and almost impossible across a
variety of manufacturers. For example, a "LOAD BYTE" instruction
could indicate that a 8-bit byte operand from main storage is loaded
into a 16-bit general register; but may neglect to specify what
happens to the other 8-bits in that general register. The consequence
is that one implementation might clear the 16-bit general register
tefore loading the byte while another might insert the byte. Since
the verification program cannot test outside of the specification, the
two implementations pass certification and a programmer moving from
one implementation to another may have a very subtle error to uncover
due to this difference.

I 2-5

E176175A FINAL REPOPT February 29, 1980

The Air Force should extensively test for compatibility of a vendor's
irplementation to the MIL-STD-1750 specification. It is better to err
on the side of conservatism than to under test an inplementation.
Additionally, the Air Force must be careful not to test outside the
MIL-STD-1750 specification as indicated previously.

'Ile Air Force should encourage vendors to have their implementations
certified. In order to do this, the certification process should be
as painless as possible. For example, the Air Force should freely
make available copies of the verification programs for the vendors to
"pre-test" their implementations. Furthermore, when the certification
process detects a problem, the Air Force should provide as much
information as possible about that failure, and then should resume
testing for other errors in order to provide the vendor with as much
information as feasible about their computer. (However, it must be
noted that the information provided need not be to the extent that the
Air Force is debugging the vendor machine.)

The Air Force must maintain full documentation of the certification
process in order to duplicate the certification process at a later
point in time or to reverify that a certification was properly
undertaken. When retesting is indicated (as described in another
section), the Air Force must document and publish the results.

2.4 STUDY GROUND RULES

Ihe results of this study are based upon the set of ground rules
(developed with Air Force guidance) which follow:

1. In SEAFAC, all hardware facilities (in particular the VAX
11/780 computer, the PDP 11/55 computer, and the
MIL-STD-1553 interface to these computers) should be
considered zero cost from both a Non-Recurring Start-Up
(NRSU) and a Recurring basis.

2. The certification process should take less than two weeks.
A manned work week is comprised of five 8-hour days;
however, an automated process without manual intervention
could be available for second and third shifts.

7. Only one vendor at a time would be certified in the SEAFAC
facility due to problems associated with proprietary
hardware/information about vendor's competitors.

4. It is better to be conservative and over test than to under
test during the certification process.

5. In order to be certified, a minimum storage configuration
(like 64K) and a standard I/O channel (like MIL-STD-1553 or
RS-232) could be required.

2-6

..

6176175A FINAL REPORT Fetruary 29, 1980

6. A standard Ground Support Equipment (GSE) interface is not
required because a standard Ground Support Equipment
interface for a family of computers starting with a one page
micro processor (with RAM) embedded in a system up to a
standalone computer in its own box could unfairly penalize
the former class.

7. For converting man years into cost, a 1979 labor rate of
$70,000 per professional Air force employee should be used
which is also approximately the same for a professional
industry employee.

8. During the ten year expected life for the MIL-STD-1750
architecture,

a. from 313.2K to 522K source lines of assembly code are
expected for operational programs, and

b. twenty ccmputers are expected to be submitted for
certification by SEAFAC and ten of these would be
resubmitted after initially failing.

9. Programmer productivity is 75 lines of assembler source code
per man month and '.10 lines of figher Order Language (HOL)
source statement per man month for operational programs.
Parenthetically, a 1 to 3 factor is applied for expanding
from one HOL statement into assembler code statements.
Software maintenance costs are based on:

a. the existence of two errors per one thousand assembler
source lines of delivered code, and

b. each error requires one man week to repair.

2-7

E176175h FINAL PEPCRT fetruary 29, 1980

THIS PAGE INTENTIONALLY LETT BLANK

2-8

6176175A FINAL PEPOPT February 29, 1980

3.0 DEFINITIONS

ihis section provides definitions for a numter of concepts which are
used throughout this report. Definitions are provided here because
tie terms they define are used quite loosely in the industry. In
addition to the definitions, comments are provided which relate the
terms to this study.

3.1 CCMPLETENESS

Ccmpleteness is a measure of how thorough an architectural
verification program is in testing that a particular machine meets an
architecture specification. A complete verification of an
architecture would require checking all possible combinations of
remory lccations using all possible ccmbinations of instructions and
all possible combinations of data patterns, as well as checking all
ccnditions which are to remain undisturbed. The measure could be
expressed by the number cf combinations tested as a percentage of the
number of combinations possible. This is not a very practical measure
tc acnly to architectural verificaticn programs, however, since a
complete verification of an architecture such as MIl-STD-1750 would
take an unreasonable amount of time. For example, just to check all
pcssible pairs of instructions with each memcry location and each data
pattern would require ten years (assuming a two microsecond
instruction time).

(1952 pairs x 216 memory locations x 216 data patterns x
2 x 10- 6 seconds = 326,632, 262.9 seconds) > 10 years.

chviously, exhaustive testing for a ccmplete verificatioz is not
practical.

For most verification tests, the completeness percentage would be a
figure near zero. Also, verification Method A could have one hundred
times the completeness of verification Method B, while A only
exercised half of the instructions and P exercised all of them. For
ttese reasons, completeness would not be a useful measure for
distinguishing between architectural verification programs.

3.2 COVERAGE

Coverage is the percentage of the computer hardware (ir terms of
gates, wires, microcode, memory locations, etc.) which is tested by an
architectural verification program. This term is commonly applied to
the microcode portion of the hardware. A measurement of coverage has

3-1

6176175A FINAL REPOPT February 29, 1980

teen made for several architectural verification programs. See, for
example, Criteria for Architecture Verification, by R. C. Varney and
N. P. Groundwater. Coverage for developing a computer (as applied to
microcode) is a useful concept, since less than 100 percent coverage
implies that parts of the machine remain untested (which may contain
errors). When applied to architectural verification, however,
coverage has two limitations. First, measurement of the coverage of
gates and wires is very difficult. This is significant since failures
of gates and wires contribute to architectural discrepancies as surely
as do microcode faults. Second, and more important, attainment of 100
percent coverage does not guarantee that no architectural
discrepancies remain in the machine. Simply exercising each location
cf microcode does not mean that eiery execution path has been taken.
Furthermore, coverage is nct expected tc be a gocd measure for
distinguishing between architectural verification methods, since most
methods are easily capable of achieving 100 percent or nearly 100
percent coverage in practice.

3.3 CCNFIDENCE

Ccnfidence is the degree of certainty that a given scftware module
(which is known to be correct) will execute properly on a machine
which has been certified through the use of an architectural
verification program. While confidence would be a useful measure for
distinguishing between architectural verification methods, there is no
simple means of obtaining estimates of the confidence associated with
Each architectural verification method.

-.4 QUALITY

Cuality is defined as the degree to which an architectural
verification method is capable of determining compliance of a hardware
inplementation to an architectural specification. It is measured by
the projected total number of architectural discrepancies expected to
remain in a machine after verification. This concept is applied in
tlis study and is discussed in detail in Section 5.

3-2

6176175A FINAL PEPOPT Fetruary 29, 1980

3 .5 SECOND-ORDER EFFECTS

Second-order effects are program executicn errors which are the result
of the interactions between two instructions. For example, the ADD
and MULTIPLY instruction could function properly when executed
independently, but fail when executed sequentially. Second-order
effects are both very real and very hard to find. The definition of a
ccmpleteness suggests the difficulty in testing all instruction pairs.
Cbviously, even higher-crder effects are possible.

. ACCEPTANCE TEST PROGRAM

T'te Acceptance Test Prcgram (ATP) is the software portion of the
Acceptance Test Procedure which is used to sell-off the hardware.
This program attempts to verify that all functions defined in the
hardware specification, which can be cbserved by the programmer,
perform properly. An ATP usually contains verification tests,
performance tests and sections used for detailed measurements.

3.7 ARCHITECTURAL VERIFICATICN PPCGFAM

An Architectural Verification Program (AVP) is a computer program used
tc demonstrate that a specific hardware implementation of a computer
architecture performs all programmer observable functions as defined
in the architecture. All basic architectural features are assumed to
function properly and are used freely throughout testing. An AVP
usually not only verifies that what is expected is performed, but also
that no unintended functions are performed.

3.8 DIAGNOSTIC PROGRAM

A Diagnostic Program is a computer program written to verify the
proper operation of the hardware and to attempt to isolate any
failures (typically, the Shop Replaceable Unit level). The size of
the program is reduced by knowledge of the hardware implementation and
by the addition of hardware and/or microcode to assist it in achieving
its objectives. The program is highly implementation dependent.

3-3

E176175A FINAL PEPCFI Fetruary 29, 1980

3.9 FUNCTIONAL TEST PROGRAM

A Functional Test Program (FTP) is a ccmputer program which is used
for initial debug of hardware. It tests all functions of the hardware
ctservable to the programmer. An FTP is written under the premise
that all architectural features require testing prior to use. It may
take advantage of the hardware implementation to reduce the size of
the program.

3.10 COMPUTER HARDWARE DESCRIPTION LANGVAG!S (CRDL)

CEDLs provide for precise syntactical descriptions of the functional
tehavior of digital circuits. They are used to describe the logic
gate networks, sequential circuits, modules, their connections, and
their control in a digital system.

Examples: Instruction Set Processor (ISP);
Used in ISP Verificaticn Approach

Language for Symbolic Sivulation (LSS);
Used in Analytic Verification Approach

3.11 CERTIFICATION PROCESS VERSUS VERIFICATION PFCGRAM

Certification is the process of testing a ccrputer bj using a
verification program in order to determine that the ccmputer conforms
(cr fails) to an architectural specification like MIL-STD-1750.

3-L

6176175A FINAL PEPCPI Fetruary 29, 1980

4.0 STUDY dETHODOLOGY

'Ibis section provides a discussion of the reasons behind the selection'I of the cost model approach and provides the rationale for the

elimination of other approaches. It describes the criteria that are
used to evaluate the various architecture verification methods and
presents a systematic approach that is used to trade-off those
sethods. This section also describes the methodolcgy that was applied
in this study for data gathering and data analysis.

4.1 COALS OF THIS STUDY

In IEM's proposal to the Air Force, a number of verification methods
were discussed. These approaches were:

1. Acceptance Test Procedures for Existing MIL-S'IC-1750 Related

programs (AN/AYK-15A, ADAM, User Oriented Micrc Processor)

2. Random Instructions

3. Analytical Research

4. Architectural Verification Program - System 36C/370

5. Diagnostic

6. Functional Test Program

7. ISP

8. Lockstep

Tle purpose of this study is to determine the advantages and
disadvantages of each of these verificaticn methods (in light of
SEAFAC resources), to systematically evaluate these advantages and
disadvantages to select the best alternative, and finally, to identify
the detailed designs and procedures needed to equip SEAFAC with the
capability of determining whether or not any machine meets the
requirements of 8IL-STD-1750. Sufficient descriptive information is
provided on the implementation of the recommended approach so that the
Air Force can: plan future funding and personnel requirements, write
specifications for the hardware and software necessary to support the
approach, and contract for (or develop internally) the necessary
facilities. & summary of the study approach is shown graphically in
Figure 4-1. The verification approaches are evaluated against the
fcllcwing criteria:

1. Impact to SEAFAC Resources - necessary additions, such as
special test equipment or specially trained personnel must
be viewed as a cost.

4-1

6176175A FINAL REPCRT FetruaLy 29, 1980

EACH CERTIFICATION APPROACH SEAFAC

Hardware .-. 6 E- Hardware

Software 6 - Software

Interface 6 - Interface

Personnel 0 -- Personnel

Other -- o 6 q- Other

I
Certification Approach 1 - Advantages, Disadvantages, Cost

Certification Approach 8 Advantages, Disadvantages, Cost

Systematic Evaluation

Best Certification Approach Method

-Detailed Designs and Procedures
-1750 Impacts

Figure 4-1. Summary of Study Approach
(Sheet 1 of 1)

4-2

E17617'A FINAL FEPCPT February ;9, 1980

2. Time Required to Perform Validatior Effort - especiaily
lengthy procedures invoke labor costs and monopolize
valuable test resources.

?. Non-Recurring Start-Up (NBSU) Costs - includes items such a.;
writing architectural verification softbare and test
procedures.

4. Recurring Costs - includes items such as architectural
verification software maintenance, and staffing during the
certification process. This figure is develcped as the cost
per certification.

. Vendor Independence - the verification method under
consideration must not discriminate cn the ha.,i6 of
vendor-unique items which are not specified by the
MIL-STD-1750 architecture. Fcr example, a method which
requires that a particular type Ground Support Equipment
interface be present to perform the test sacrifices vendor
inde pendence.

6. Application Independence - the verification method under
consideration must not discriminate on the hasis of items
which are dictated by the application reguize&ents, but
which are not specified by the architecture, e.g., machine
weight, power, volume, or codling requirements.

7. Quality - the degree to which the method verifies that the
hardware actually reflects the architecture. The quality
criteria encompasses the notions of Ccmpleteness, Coverage,
and confidence defined earlier. These concepts are
discussed in detail in Secticn 5.

8. Cost of Software Revalidation - if a validation method is of
less than perfect quality, there is some finite probability
that any software developed in consonance with NIL-SID-1750,
even software previously validated on a certified machine,
can fail on a second certified machine used for a new
application. It would therefore be necessary :o revalidate
any code which will be used on this second machine.

After evaluating the different verification methods against these
criteria (the methodology of which will be discussed later), the next
step is to systematically analyze the results and select the best
method for SEAFAC.

4.2 THE TRADE-OFF APPROACH

Tbe following evaluation method is employed in this study. First, the
VENDOR INDEPENDENCE and APPLICATICN INDEPENENCE criteria are treated
in a oass/fail manner. Because it is essential that the verification

4-3

(1161151 FIVlA FEFCFI February 29, 1980

uethcd employed test any implementation of MIL-STD-1750, any method
*which fails these criteria is rejected and is not subjected to further

consideration.

The remaining criteria, SERFAC IMPACT, TIME, NESU, FECUFFING ELEMBNTS,
CILITY, and SOFTW&RE VALIDATION ELEMEn1S, are converted to costb.
(Bow this is accomplished is discussed in Section 5.) Each
ierification method that survives the pass/fail criteria is measured
against these criteria. Since each criteria represents a cost, a
total cost is obtained for each method. The method with the lowest
cost is selected as the best.

while some of these criteria are easily recognized to be of a cost
nature, others do not have an obvious ccst relationship. Therefore,
Each of these criteria, and the techniques that will be used to
measure them, will be discussed in detail.

4.3 rATR COLLECTION

Ile first step in the study is to collect data cr all of the
verification approaches. This is necessary to fully understand each
of the approaches and to support the cost model.

Data collection was accomplished in five phases: literature search,
interviews and site visits, ECs and Validation costs, local cost
estimaticn, and miscellaneous trips.

Use of the cost model required that the fcllowing types of data be
gathered for each of the verification approaches:

Pass/Fail Data
* vendor independence
e application independence
e feasibility
a uniqueness from other approaches
e availability of information
* testable within a two week period

Cost Data
" non-recurring start-up costs
" recurring costs
" SEAFAC resources

Quality Data
" Engineering Changes (ECs)
" Software validation costs

(The reasons for collecting the quality data are discussed in Section
5.) In addition, detailed descriptive information about each of the

4-4

E176175h FINAL SEPCPI Peruary 29, 1980

verificaticn approaches is required.

4.3.1 Literature Search

An intense literature search has been made to suppcrt the researc.
teine done on the MIL-STD-1750 Certification Study. This research
rrovided additional data regarding the proposed apprcaches; but did
rct uncover any new verification approaches to he investi~atea. The
fcllowinq literature data tases were aueried by IBM Technical
Information Retrieval Center:

NTIS - National Technical Information Service

INSPEC - Information Service in Physics Electrotechnology

and Control

IBM - IBM Internal Technical Reports/ResearcE Feports

EIXF - Engineering Index

T.e results of this search can be found in the Bibliography. This
lists the papers and articles directly relevant to this study.

4.3.2 Interviews and Site Visits

All of the verification approaches investigated (except MIL-STD-1750
AIPs) have been used within the various IBM Divisions. To obtain the
detailed information required, the Divisions shown in figure Q-2 were
ccnsulted. Users of each of the apprcaches were irterviewed and,
wfere possible, the originators of the ccncepts were interviewed.
(This was the case for the Lockstep, Randcm, and Analytical
approaches.) Site visits were made to the T. J. Watson Research
Center at Yorktown, N.Y. , the System Products Division at
rcughkeepsie, N.Y., the System Products Division at Endicott, N.Y.,
and the General Systems Division at Boca Eaton, FLA.

4.3.3 EngineeKiog _ae _an Software Validation Cost rata Collection

Engineering Change data were gathered with help of the Owego Part
Number Identification User System (CPIUS). This automated system
permits a user, via a display terminal, to obtain Engineering Change
and part number information for the avionics computers built by IBM in
Owego, N.Y. Engineering Changes of interest were physically pulled

4-5

E1E15AFINAL PEPCFT FiEtruary 29, 1980

IBM DIVISIONS CONSULTED

Poughkeepsie Boca Raton
ISf370) 1ris1

Glendale RcetrW Carters
(Sf370) (System 38 Analytical

Approach

Figure 4-2. IBM rivisions Consulted
(sheet 1 cf 1)

(4-6

6176175A FINAL REPCFT Fetruary 29, 1980

frcm storage and scrutinized to determine their applicability to the
study.

Software validation cost information was obtained by interviews with
tte software personnel responsible for the validation efforts. These
personnel were located in the Air Force, the Navy, and IBM.

.4.?.4 Internal Data Gatherin

'.c sur~lemEnt the cost data cathered thrcugh the fact findinq trios
and extensive literature search, various IEM - Owego sources were
utilized. FSD personnel experienced in support software development,
:systems integration, and hardware testing and verification contributed
-:cst cata and other infcrmaticn in their area of expertise. This data
is reflected in developing the ccst figures related tc the various
arproaches described in Section 7.

7wc other trips were taken by team meibers in support ot this study.
The first was to SEAFAC to obtain informaticn atout the equipment,
personnel, and facilities available tc support tbe EIL-STD-1750
certification effort. The second trip was to Palo Altc, California to
attend4 ths. 1979 International Symrcsiur cn Ccmputer Hardware
tescripticn Languages and their apFlications. This allowEd the latest
available data on the CHDL's approach to he included in this study.

4. 4 ATA ANALYSIS

Analy'is of the gathered data began with the arplicatiun of tre
Fass/fail criteria. Additicral criterii tc thcsf discusstu if t.,
prcpcsal were identified. (The cost mode' was then aFFli,= to those
verification approaches which survived t~e rass/fail tEst.)

7te Engineering Change data and software validaticr. cost aata were
analyzed to determine the cost penalties which will te incurred
tecause ci the necessity of using a ncn-rerfect certificatIoL avtnotd.
Itis information, combined with the cost data above, form tbh Laz
for the study recommendation.

:1-7

6 L -.A...

6176175A FINAL REPC.VT Februazy 29, 1980

5.O CCST MODEL

So summarize the analysis described in Section 4, three things must he
dcne to select the best verification method:

1. Apply the pass/fail criteria,

2. Estimate the costs for the remaining approaches, and

3. Treat in an ad hoc manner any newly identified criteria
which do not fit into either (1) cr (2).

'This section describes, in some detail, the concepts behind the cost
EstinaticL process (item (2)). The application of these concepts to
tte gathered data is discussed in Sections 6 and 7.

Tiis section is oroken into two parts. The first Fart discusses the
fcllcwing items: SEAFAC IMPACT, TIE, NFSU, and FECURSiNG COST.
llese items are relatively easily converted to dcllar e1Zenditures,
which are necessary for SEAFAC to establish, use, ard maintain a
certification facility for .IL-STD-1750.

71t second part or this secti3n discusses UALIT' and _GF'avA,
VALIrATICN COST3. These items represent costs which wili De incurred
over the lifetime of MIL-STE-175O an! which are in tie form of a
renalty which will be paid by tte irdividual Frccrams wnich use
MIl-STD-1750. They are not lirect costs tc FEAFAC, but are true costs
to the hir force, nonetheless. Conversion cf QUALITY tc cost is more
involved than the conversion of the other items to cost. As a rcsult,
a significant amount of this section is devoted tc discus.Ion or toe
QCALITY concepts.

C.1 Cr STS '10 SEAFAC

'iiS S CtIGCL descrniL's the evaluation critria SEAFAC IMPAC., ::MF'
N " , ina ECU RING COST. These it-is W111 e 31 Ircct cost t it !AFAjY. Tb descripticns prcvllei here rr in the tc[r o: a Lk, _l

rxrec~itns. taey are incladed here as exemt ary information tior the
cost molel. Again, the actual tin4incs of the Study d 4*dZ 1

E*cticns t and 7.

C..1 l_ ' ., 41I-Ce5Qq1jC5

A -FA A ntd i Li I ;r t !ea ." I;! reEc'c r- '+ , in<Iu:'nc dt. + i..+ mint

A :Prr..:.e, woictn cclil -otentiaI lv t+ - et u I tc ai rLIt ?C tui. +

. uWe vfpr , i :a rt icul it VrI ,At r~ aett ui~ t 3

6176175A FINAL PEPCPT Fetruary 29, 1980

urit under test. A cost would be incurred for procuring that
equipment and training personnel to use it.

Arother verification method might require that SIAFAC hire an
architecture expert. A cost would be incurred to hire this person,
pay his salary, and pay his benefits.

Each verification method is examined for any such unique
considerations.

S.1.2 .me Iequired to Perform Validation

!he time required to perform the certification/verification approach
translates into a cost for personnel and equipment (reguired to
support the rate of testing and maintenance).

'. 1.? Nor-Recurring Start-Q Costs

?any tyres ot one time start-up costs night be incurred with the
various verixcat!on test methods. It is possible that a particular
mEthc wouia require that some form cf architecture verification
Frcgram either be written or modified. retailed test procedures would
likely have to be written for any approach. For the Lockstep
approach, it may oe necessary to procure a known, standard machine.
TYE ISP aenerated AVP method may reauire develoFment of AVP generation
scftuare. Ttie DiagLostic approach might reguire analysis of each
darufactuler's progLams. Another requirement may be some type of

Crcun Surport Equipment (GSF) or I/C interface to ccnnect a unit
urder test to tne test hardware.

.. £ecZI.LA Costs

Ccftbirp tdt iz; to .e britten must also be maintained. The same
; rtlic t: a.) ndLuwir(to be Trocured. f.ese costs are, of course,
rlat'-' t t,,IL I.; i.i 1 ife imC. Pecurrirg costs are also incurred

to • ~~~ tir4 o urir: the validation rrocess.

. UALlY AND VAL;DA7ICN CCS'S

Is Irortant to L coqr.ize the sigrificance of the cuality measure
Cf -rv rcr.tqctu~e verificaticr metro, tecause no mettod oi testing a
Jic Iran wj. IE pertect, i"r, as a result, costs will be incurred.

A&

6176175A FINAL FEPCRI Fetruary 29, 1980

Quality is defined as the degree tc which an architectural
verification method is capable of determining compliance of a hardware
iaplementation to an architectural specification. The unit of measure
is the expected number of architectural discrepancies remaining in a
machine after architecture verification. The quality of a given
verification method, then is an assessment cf how good that method is
at finding machine defects or architectural discrepancies.

71e concept of quality is related to three separate concepts which are
widely used in the industry. These are ccmpleteness, ccnzidence and
coverage. Completeness requires checking the machine for all possible
data tyres wits all possible instructicn sequences in aii possible
memory locations, etc. Hardware coverage is the percentage ot a
machine that is tested in terms of gates, memory locaticns, microcode,
wires, etc. Confidence is the degree cf certainty teat a software
mcdule will execute properly on a verified machine. Tbese concepts
have been briefly described here because they are commcnly referred to
in industry. None of these three concepts are used in the cost model,
however, for reasons cf practicality (discussed in Section 3).
Rather, the concept of quality will be used.

Cre would expect that the direct cost of implementing a verification
methcd would be roughly related to the quality of that method as shown
in Figure 5-1. A test that was not very extensive (and, hence, not of
high quality) would not be difficult tc program and wculd not take
Icng to run, making it low in cost.

Cost of Verifying
That a Machine
Meets the
Architectural
Specification

Quality Perfect

Quality

Figure 5-1. Verification Cost as a Function of Quality of Test

5-3

E 176175A FINAL FEPCFI Ye~ruary 29, 1980

Slight additional investment to this minimal test would result in
large gains in quality as more and more instructicn types and formats
were tested. The cost of approaching perfect quality, however, would
be extremely large, because it would be necessary to test all possible
data combinations with all possible instruction sequence combinations
in all possible memory locations, etc.

5.2.1 Peasons for Considering Quality

Achievement of perfect quality in a verification method would require
tlat method performs exhAustive testing. That is not feasible for
MIL-STD-1750 certification (see the definiticn of Completeness).

Since any useable verification test method is of less than perfect
guality, there is a very real possibility that the tested machine will
still have undiscovered architectural discrepancies, and that any
operational software will not execute correctly (that is, as defined
in the architectural specificaticn manual). It is necessary,
tlerefore, to check all software that is to run on that machine for
Fpcper execution, i.e., to validate that software. Typically, this
validation is initiated in a laboratory simulation and then completed
ir actual flight test.

The software to be validated can be brcken up intc two classes:
existing software that is to be captured for this machine (e.g.,
navigation modules, executives) , and new software that is to be
Uritten for this machine.

TIe cost associated with revalidating the existing software (which ad
already been validated for scme other machine) is a direct result of
the less than perfect quality of the verification method. If a
verification method were 100 percent complete in certifying that a
machine met MIL-STD-1750, any operational software would execute
properly and, hence, revalidation would be unnecessary. Eowever,
since no verification method is of perfect quality, revalidation is
necessary. Any architectural discrepancies which are discovered
during operational software revalidaticn (which remained undetected at
the time of verification) require corrections. These corrections
extend the revalidation process and increase the cost cf validation.
TIe quality of the verification approach will determine the number of
architectural discrepancies which remain undetected at the tiwe u:
architectural verificaticn, which in turr, determines the Lumber ot
architectural discrepancies which will be discovered during software
validation. Therefore, the cost of revalidation is a function of the
quality of the test which certifies tle machine, since the direct
result ct an imperfect verification is the oversight cf architectural
discrepancies which must be fixed and which extend Lhe revalidatcn
prccess. (Presumably, software errors have been discovered in the
iritial validation effort.)

It is expected that these costs could be substantial.. If an

5-4

-efo

6176175A FINAL REPCFI February 29, 1980

architectural discrepancy is discovered in the flight testing phase of
software validation, a significant recovery process is required.
First, sufficient data must be collected tc permit identification or
tle lardware fadlt. The computer must be physically pulled from the
airframe. An engineering fix fcr the prcblem must be devised. This
fix must then be installed in the machine. The machine must then be
retested and installed in the airframe. Additional flight tests must
be performed to verify that the engineering change both solved the
prcblem at hand and did not create any new problems. The software
which had been validated to date must be re-checked for proper
performance. All of these activities can add up tc a sutstantial
;enalty in time and money.

The cther class of software that needs tc be validated is new software
to be written. Since new software must be validated in any case, one
might argue that this is an irrelevant consideration. However, the
cost of the validation will certainly be dependent on the quality of
the test method used to certify the machine. A machine that has been
poorly certified may have many architectural discrepancies which must
be found and corrected in the course of operational software
validation and, conversely, a well certified machine will greatly
reduce the exposure to unanticipated software validation costs because
few architectural discrepancies will remain.

New software validation costs may be divided between costs incurred in
correcting architectural discrepancies and costs incurred in
correcting software errors (shown in the right-haud side of Figure
1_-2). The new software validation costs of interest here, i.e., those
associated with the quality of the method Used to certify the machine,
are only the costs of finding architectural discrepancies (software
errors have nothing to do with the onality of the hardware
verification). Old software revalidation costs are a good
approximation for these new software ccsts since they are a measure of
the costs associated with finding architectural discrepancies only
(see the left-hand side of Figure 5-2).

+---

Existing Software I New Software
(to be captured) I (to be written)

---------------- I--I
None. Software I No. Costs exist,l
previously I but are of no

Software Errors validated I relevance
I (not related to
II quality)

--
Architectural I I
Discrepancies I Yes I Yes

(Hardware) I I
+---

Figure 7-2. Quality-Related Cost Components of Software Validation

5-5

6176175A FINAL FEPCF'I Fetruary 29, 1980

In summary, the implication of less than perfect quality of a
verificaticn method is that additional software validation costs will
be incurred. The magnitude of these costs is a functicn of the degree
of quality.

Also note that it is only necessary to revalidate operational
scftware, not support software. A Program Manager only cares that the
software which runs on his machine is correct. A error in support
software which affects the operational scftware would he caught during
revalidation. Validating the operational software will, in effect,
validate the support software, at least as far as the Program Manager
is concerned. Errors in support software which do not affect the
cperational software are irrelevant.

r.2.1.1 Quality Measurement

In order to project software validaticn costs, two items must be
Estimated - the relationship between quality and the cost of software
validation, and the degree of quality associated with each
verification method. While these are not easy tasks, ignoring quality
and software validation costs (which are real costs) will bias the
study results in favor of the cheaper, less complete verification
methods and would result in ignoring substantial costs to the Air
fcrce. The following method is used to estimate quality.

'he measure of the quality of a verification method is defined as the
number of architectural discrepancies that remain in a machine after
trat machine has been certified as being represertative of the
architecture. That is, how good was the test at catching all of the
architectural discrepancies in the machine? (Implicit in this measure
is the notion that, for the purpose of architecture verification, all
rachine defects, regardless of their cause, are failures to meet the
architecture. A burned-out gate which causes a multiply failure on a
particular data combination is as much a failure to meet the
architecture as is a defective algorithm which causes a multiply
failure on a particular data combinaticn.)

If a new machine is designed and built to a particular architecture,
and then tested with scme architectural verificaticr method, many
architectural discrepancies would be discovered initially in the
1ardware deveicpment phase. As time went on, the number of
architectural discrepancies discovered wculd diminish. Finally, no
more architectural discrepancies would he discovered and the machine
uculd he deemed architecturally correct, at least as well as the
verification method could deteraine. Ihe machine would then be
"sold-off". However, experience would suggest that some hidden
architectural discrepancies remain in the machine. Further use of the
machine, such as in software validation or in actual flight operation,
wculd uncover some of these hidden architectural discrepancies. The
rate of discovery would jump after "sell-off", and again, the rate of
discovery would be a decreasing functicn of time and wculd gradually

5-6

6i76175A FINAL REPCUT Fetruary 29, 1980

approach zero. This error discovery scenario is depicted in Figure
r--3. The number of architectural discrepancies remaining after
verification (sell-off) is the cross-hatched area.

For machines already sold-off and in use, it is possitle to estimate
the number of undiscovered architectural discrepancies that remain at
sell-off. The number of architectural discrepancies remaining in a
machine after architectural verificaticn is the sum of those
architectural discrepancies discovered to date (since sell-off) plus
those (as yet) undiscovered architectural discrepancies. The former
are recorded in the Engineering Changes (ECs) written against the
machine. The latter may be estimated by plotting thE number of ECs
with time, litting and extrapolating a curve, and integrating over
time. from the last data point until infinity. This is shown
Sraphically in Figure 5-4.

The number of architectural discrepancies found will te a function of
two factors - complexity of the machine and quality of test. The
crganizational/architectural complexity is a factor relating the
number of remaining errors with the quality of the verification
method. One would expect that the number of errors remaining after
certificaticn would be larger for a larger machine, independent of the
verification method. A more valid quality measure is therefore
obtained by dividing the number of architectural discrepancies
remaining in the machine by the organizational complexity, which can
be approximated by the size of the machine (discussed in Appendix B).

The resulting quality measure, then, of any particular verification
method i, as measured against machine j is expressed as

[ECs since sell-off + projected remaining discrepancies

quality = fi
JJ

i [machine size

Multiple data points for a given method are averaged to generate a
ccmpcsite quality estimate for that method.

!.2.1.2 Engineering Changes and Architectural Discrepancies

For the purposes of this study, the concept of what constitutes an
architectural discrepancy is less restrictive than the concept
normally used by the industry. Any machine change which, if
unprocessed, would cause the machine tc fail an architecture
verification test is considered to be an architectural discrepancy.
This includes things not normally associated with instruction set
architecture, such as electrical noise, timing races, and logic
errors. Also included, of course, are more obvious

5-7

-. . -

El176175A FINAL PEPCE! Yetruary 29, 1980

Rate of
Hardware
Architectural
Discrepancies
Discovery

4 Time

Begin Sell-off (Architecture Verification),
Initial start
Check-out Validation

Figure 5-3. Discovery of Architectural DiscrepancieE over Machine
Lifetime

Discovered Architectural Discrepancies
(From EC Data)

Rate of xrplto N
Hardware ~-Etaoain -

Architectural
Discrepancies
Discovery

Undiscovered Architectural Discrepancies

Sell-off Today

Figure 5-4I. Hardware Architectural Discrepancies Remainir.g After
Architecture Verification

5-E

E176175A FINAL PEPCFT Fetruary 29, 1960

architecture-related problems such as defective algorithms or
improperly implemented microcode.
11e reason for this permissive definition is twc-fold. First,
ccnsider the certification process to take place at SEAfAC. The Air

Force cannot discriminate between types cf failures for a machine
which does not properly execute a test. Any failure must be a failure
to meet the architecture, regardless of the cause. Tle second reason
is that all of these failures (including those not normally associated
with instruction set architecture) will be a true cost to the Air
Fcrce during Operational Flight Program validation.

'Tlis is not to suggest that all Engineering Changes count as
architectural discrepancies, however. ECs are written for many
reasons including changing screws, coatings and connectors, as well as
for customer directed changes and cost reductions. These types of
changes are not relevant to this study. As a result, each EC must be
scrutinized as to its relevance.

-.2.1.3 Estimating the Cuality - Validation Cost Relationship

As discussed earlier, the costs cf validating operational software can
be broken into two parts - the ccst associated %ith correcting
software errors and the cost associated with correcting hardware
errors (architectural discrepancies). Only the latter cost is of
interest in this study, since the cost associated with correcting
scftware errors is independent of the quality of the verification
approach. As used in this study, the term "validation cost" means
crly those validation costs asscciated with architectural
discrepancies.

The expected relationship between the degree of guality and the cost
cf validation is shown in Figure 5-5. The rationale for the shape of
this curve is as follows. A near-perfect test would incur a basic
cost for validation (e.g., flight test), but should proceed smoothly
with few, if any, defects to be corrected. Less perfect tests would
require more extensive validation efforts, thereby incurring higher
costs.

5-9

" .•2W

E 176175A FIRAL PEPCI Fetruary 29, 1980

Software
Validation
Cost per
Line of
Code

cost of Basic

Flight Test with
no Defects Found

* Degree of Quality (Decreasing Degree)
Perfect
Quality

Figure 5-5. Validation Costs as a Function of Cuality

Ile quality - software validation cost relationship can be estimated
by collecting both software revalidation cost data and quality data on
programs that have incorporated hardware upgrades to existing machines
with the intention of capturing existing operational software. This
yields a curve which has only those costs which are quality related;
the software validation costs associated with correcting software
errors are thereby factored out. Since the existing software would
have already been validated, the cost cf revalidation could be
attributed solely to those architectural discrepancies which remained
in the machine upon completion of the architectural verification
process. That is, the imperfect quality cf the verification method
%as the cnly reason that revalidation costs were incurred. (Note that
the gathered cost data must be scrutinized to see that no costs are
ircluded for the addition of functional capability.)

It is not necessary to obtain quality versus software validation cost
data for Each verification method. A machine that has been verified
to a certain degree (i.e., according to the quality of the method
used) will incur a software validation cost commensurate with that
quality, regardless of the verification method used. An architectural
discrepancy Las a cost of correction which is independent of the
verification ,-thod used on that machine. Hence, the quality -
scftware validation cost relationship, regardless of which
verification method was used to estimate that relationship, can be
arplied to all validation methods.

5-10

6176175A FINAL BEPCRT Fetruary 29, 1980

The software validation costs are a function of the amount of
cperational software to be validated. An increase in the number of
lines of code would result in a proporticnal increase in the cost of
validating that code. Therefore, the software validation cost must be
normalized by the number of the lines cf code.

5.2.1.3.1 Use of the guality vs Cost Felationship. Application of
the measured quality of the different verification approaches to the
quality versus cost relationship yields a cost (of having
less-than-perfect, quality) for each of the verification approaches.

Tc compute these costs, EC data are gathered for each of the
verification approaches. Projections are then made to estimate the
total number of architectural discrepancies expected tc remain in the
m achine after verification. (These two steps are performed in the
same manner as is used to estimate the quality versus cost
relationship.) These projections must then be normalized by the size
cf the machine (discussed in a later section). Finally, each of these
normalized projections is applied to the quality versus cost
relationship to obtain the cost for each of the verification
apuroaches.

5.2.1.3.2 Summarv of the Qua lit Ccnce1ts. Quality is defined to be
the degree to which an architecture verification method is capable ofdeterrining compliance of a hardware implementation to an

architectural specification. No verification method is of perfect
quality. Less-than-perfect quality implies that architectural
discrepancies will remain in a machine after verification testing is
siccessfully completed and certification is granted. These
architectural discrepancies will result in a cost to the Air Force in
the form of an extended operational flight software validation
process.

Estimation of the cost penalty due tc less-than-perfect quality for
tle different verification methods is basically a two-step process:

Step 1. Estimate the cost versus quality relationship
by

(a) gathering EC data for various hardware
upgrade programs,

(b) gathering software validation costs for
those same programs, and

(c) fitting curves to the data of (a) and (b).

Step 2. Gather EC data for the different verification
approaches and apply to the cost versus quality
relationship obtained in Step 1.

5-11

6176175A FINAL REPORT Yetruary 29, 1980

O.2.1.4 objections to the Quality/Software Validation Cost Approach

It may be argued that the quality data will be a biased measure of the
true quality of any given verification method. For example, consider
the Architecture Verification Program (AVP) method. AVP development
is typically a two step process. The first step is to write the
piogram based on the architecture specification document (Principles
of Operation banual). This will test a certain percentage of the
machine (i.e., it will have a certain level of quality). Since it is
impossible to test all possible data combinations and since many
failures are data related, a second step is then performed and the AVP
is "fined-tuned" to the data sensitivities cf the particular machine
under test. The machine is examined to verify that all possible
execution paths (which are data dependent) are exercised (i.e., there
is 100 percent microcode coverage). For example, a multiply algorithm
would he examined to verify that the different test cases used all
pcssible branch paths in the algorithm.

bhis fine-tuning affords an increase in quality for most approaches
(except Random) which is unavailable to the Air Force since it cannot
he determined in advance what algorithms will be used by different
manufacturers to implement the instruction set. This results in an
upward bias of the quality estimate.

While this is a valid objecticn, it does not severely limit the value
cf this data, however, because of two factors. First, it is probably
a uniform bias. That is, each program to le investigated has as its
goal a high degree of quality. It is reasonable to expect that each
program used this relatively inexpensive method (i.e., fine-tuning)
for improving test quality. Second, it is the primary goal of this
studv to select the best method relative to the others.

Another objection to this quality - software validaticn cost approach
is that a large number cf data points would be necessary to obtain a
high degree of accuracy in cost estimation. This is also a valid
objection. However, the alternative is to ignore quality and software
validation costs; but experience would suggest that these costs can be
substantial. It is better to make use cf the information that is
available (accepting a degree of uncertainty) than to ignore it.

F.3 PPOJECTIIN Of THE TOTAL EUMBEP CF AFCI'IECTUFAL LISCEEPANCIES

Appendix B describes in detail the method for prcjecting the total
number of architectural discrepancies from the EC data. It also
describes the method for normalizing the data by machine size.

5-12

6176175A FINAL PFPCPT Fctruazy 25, 19o

6.0 VEPIFICATION APPROACHES

A number of different aporoaches have tccr. identified tor use iL
verifying computer architectures and have teen investigated:

AN/AYK-15k Acceptance Test Program (ATF)
Random Instructions
Analytical Research
Architectural Verification Prcgram (AVP) - System 3t0/370
Diagnostic
Functional Test Program (FTP)
Instruction Set Processor (1SF)
Locxstep

Each of these approaches is described herein as it currently is usEd,
along with observations regarding its aFplicability tc MIl-STD-1750.
rass/fail criteria are also applied to each verificaticn approach. A
subsequent section describes these approaches after they are modified
tc apply to MIL-STD-1750. Any special recuirements for impiemenLaction
are also described. Finally, the methods are cotpared and the
essential differences among them are clarified.

6.1 AN/AYK-15A ACCEPTANCE TEST PROGEram

6.1.1 Description

The AN/AYK-15A Acceptance Test Plan (ATP) consists cf a number of
tests which must be successfully completed in order to sell-off an
AN/AYK-15A computer. These tests include testing the MIL-STD-1750
architecture among other tests. The ATP method consists of extracting
tte portion of the ATP which tests the MIL-STD-1750 architecture and
using this as the MIL-STD-1750 architecture verificaticn program.

The AN/AYK-15A ATP consists of a number of subtests which must be
passed as part of the sell-off procedrre for the AN/A!K-15A computer.
These subtests include: User's Console, Instruction Set, Registers,
Main Storage, Bus Controller, Input/Output, Power ON/CFF Sequencing,
etc. The ATP includes some subtests which are not part of
MIL-STD-1750. These subtests (User's Ccnsole, Eus Ccntroller, Power
CN/OFF Sequencing) would be eliminated from the ATP to make it a
vendor independent architecture verification program.

The Instruction Set test verifies OP CODE assignment and basic
functional operation of each instructicn. It then checks that the
irstruction correctly modifies, or does not alter, as the case may be,
the status word for all possible values the status word may have.
This portion of the test is exhaustive. It also verifies the indexing

6-1

S177115A FINAL REPCF1 Fctrua.y 29, 1960

canatility toK all instructicns which allob indexing. It checks the
u-E of each ot tne 15 index registers a r useE FofitivE, neati ve ani.
zerc values iu the in~ex registers. It also verifies the cdpdL.ity
cf each ILstructIon to generate an urderflow aY.d/OI overflow
interrupt, when required. Data values used in the]structC)o Set
test cover all cosoinaticns of positive and negative nuale£s.

The test also has a benchmark portion to verify instructIon tiles.
This test would be elimizated, since no tiring is specified irn
PII-STD-1750. There is also a randcm irstructicn hang test tc verIf)
tte handling of illegal instructions.

The Pegister test verifies the capability to address, set and reset
various registers in the AN/AYK-15A. Crly those registers defined iL
IAIL-FTD-1750 would be included in this rethod. The recisters checked
include the CPU general registers, Memory Protect RAM, Status
recister, and Interrupt Mask register. The CPU general registers and
the Status registers are checked by running all 64K Fossible data
patterns through them.

T.he Mair Storage test verifies each main storage location by writing
and reading each of the 64K possible data patterns in eacn locatioL.
The test also verifies the main storage protection features.

'!he Input/Output tests verify the operation of the limers, Direct
Input/Output, external interrupts and tMA.

6.1.1.1 Block Diagram

figure 6-1 depicts a hardware block diagram for this approach.

6-2

e I I~r% I'; 1 T
r

* * , 1 ,,-

Term lnal Console Interface under
, .

rter Control

AN.A'IK 15A
DisKett Verificution

Program

'he ATP approacri asa beEn ased by many faT:11dctuL-:s, ILC 2 1.4 TE'.

tc verify their computers.

E.1.? Fardware aesouzces

1h.e AN/A!K-15A ATP requires the conscl (%hic. is c tIo, .A 1; 1 .
current version of MIL-STD-17'O) and Esc-cial hardwaiC to tk-bt th.
external interrupts and C1MA. To wcrk in a aulti..Le ve;.i,-:
envircnment, the hardware interfaces wculd rave to te !:taid j1zt: .

E.1.4 Software Resources

The software resources for t-e 4N/AYK-IcA areaL'v exist, ,
effort would ne to select only those FC[ticrs Of the A", w V1 ve:i:
t he architecture, and tc add tests as rPquired tC if (- Lot:

-A

'~ 'FI NAL FircF' Fr'krudzy 49, 198O

u L'' u Lui4~~ v v w ict exteic ~I-L-7~~ to
A v 6 ae b UI ~ - I t . tC rC

x t -t i .Ite~-t ure ve r if ica ticr pprsor, wculd Ic1 requirco to
I ti LtIC r t io 0 o~iCf the AIF bI.icf. ocr.c(:ir. arcr.itectural

~ fit actud I evf-Cutior. of t1p metfhod caL he performed ty
~~rie -esr I pErC L EXlCer.Ienced i

C, vti.L.7at ion coul tp rcqu~red f or ELtO[r aria.ysiE,
t i i~az nrctatly a ccrtractors re E1c r.s.~1 iit y

t 'i AN A* A r dtId I tf tat tt f F LO 1a I ,a V E

* .~- i. . * ~ ,t fe C I lv it zV* !CjZEtt rLezeCSSar V IS

7. t.. r qs r-u:d tc me c-t r! 5 1 7EC
t. -*A 1 A i-r)V~f Ii t a~ test E ciS lcGUi.4 . y the

t. i. !r m-r r cf r -1

1: t t A.k A A 7i e attec . is tit t I: C kiu 1 1Es a

Ct I*i r CUI f 11 a7

I A fI-- fC- Id I a rebate ..s re'uL:lE Z

-A A v> ~ VI + V L; th Ecic u L ar~c cost
v I. I f 1 C- a' v1! t i on L ti com~i ete

t, r a. I I t.~ I it t L s I d; e v-i ta at

E176175A FINAL PEPCF! February 29, 1980

6.2 FANDCM INSTRUCTIONS

6.2. 1 Description

7.Eis is a statistical approach to the task of verification. The
candidate computer is initialized to a known state. A block of random
instructions is then generated and executed by the unit. All machine
state results are then captured and ccrn ared against the exptcted
results which ari obtained through simulation. This process is
continued until atistical evidence of ccmpleteness is acceptable.

There are two a±in programs required by the approach. A program to
generate a block of random instructions and a valid simulator to
cenerate the expected results. Control for the twc programs is
provided in a table of implementaticn dependent conditions.

A random seed is generated, saved for future recall and fed to the
instriction stream generator which returns a variable length block of
ranom instructions. This instruction stream is fed tc the simulator
alcna with the control table of implementation dependent coiditions
and the initial status of the machine. This is simulated upon the
simulator, and the ending status of the sequence is returned for use
as the expected values for the ccmputer under test. The instruction
stream is then run on the hardware, an interrupt is forced and the
status variables captured for comparison with the expected results.
Te two results are compared and, if equal, the next test is
cenerated. If not equal the stream is rerun to check for an
intermittent failure. If the second run passes, the error is logged
and the next test generated. If both runs fail, the last instruction
in the stream is replaced by a NO-CP and the stream is rerun on both
the hardware and on the simulator. The process is continued up the
stream uncil a successful comparison is obtained. The last NO-OF is
replaced by the instruction and the stream run on the hardware and on
the simulator to capture expected and actual results at each stage of
tte stream. This information is then printed for use in diagnosing
tle failure.

6.2.1.1 Block Diagram

Figure 6-2 depicts a hardware block diagram for this approach.

6-5Ai

. . . .liti , ', -

6176175A FINAL F1PC! FEtruary 29, 1980

GSE CPU
Tester Under

Test Forces
Test__ _I/0 Parity Errors

Tester and
Program Load I/0 Test Sequences
Operator Interface Test Program

Simulator
Random Generator

Printer

Figure 6-2. Randcm Instructicrs Block Diagram

E.2.7 EXP~rience

IPFB has used this method to check the corpleteness cf the Syster
23C/370 verification method and found that detection times were
relatively short when known problems existed in the urit. Generally
tIe error was found in the first 30 minutes of run tiue for a machine
with the performance in the range of fcur rillicn instructions per
seccnd.

Tynically 1,000,000 test sets of randcmly generated irstructions froc
1 to 32 instructions in length (average lergth cf 10) can re run iin a
F-hour period. Thus, it is expected that 10,000,000 irstructici, ca~ec
arE executed in an 8-hour neriod fcr a fcur Mil2icn irn.trctaoLL jtl:
seccrl ccmputer.

This method L.as been successfully used in all four staqes of computcr

develcprent:

1. hy Engineering as a bring up tocl

2. by Quality Assurance as a verification tccl

6-6

+ . .. ~. - ---- ..

E176175A FINAL FEPCFT Fetruary 29. 1980

3. by Manufacturing for final box checkout

4. by Field Engineering as a diagnostic and operational cbeck.

E.2.3 Hardware Resources

7he Pandcm Instruction method requires a sFecialized tester to verify
T/C, interrupt structure and concurrent cperations. This tester is
designed for a particular computer and I/O configuration. Also, the
ccmouter must have a special interface to the tester so that the
tester can be controlled by the test prcgram. In addition, Ground
Surport Equipment is necessary for prcgram ccntrcl and error
reporting.

6.2.4 Software Resources

A complete MIL-STD-1750 architectural simulator must be written to
generate data for comparison. Additional advantages are gained if the
simulator is written to run on the MII-STD-1750 ccmputer iLself;
however, this may require provision for additional main storage. For
example, I/O transfers are substantially reduced, but much more main
storage is required for the simulator. Some type of an I/O tester is
also needed for verification of I/O related architectural features. A
randcm instruction generator must be written to generate the
instructions and compare the results.

6.2.5 Personnel

A person who is experienced in architectural verification and in
simulation is required to %rite the prcgram for the MIL-STD-1750
simulator. A person with some support software experience and
familiarity with the MIL-STD-1750 architecture is recuired to write
t1e random instruction generator program. The actual execution of the
test prcgram can be performed by a relatively inexperienced person.
Error analyses could require a person with a high degree of training
in architectural verification, although error analysis is probably a
ccntractor's responsibility.

E.2.E observations and A liabilit_y to !It-STD-175O

The Pandom Instruction method provides an excellent nethod to verify
ccmcuter architectures. The method provides for a thorough testing of

6-7

6176175A FINAL BEPCFT Fetruary 29, 1980

instruction sequence dependencies and other subtleties due to the
random nature of the test cases. This approach also shows promise as
a good method to improve confidence and completeness in other methods.

No detailed analysis of the architecture wculd be required to generate
tle test sequence.

A detailed analytical analysis has been unsuccessful at developing the
criteria used for completeness. Engineering judgement has determined
the number of instructions necessary for the verification tests to
achieve a level of completeness; the randca process can be terminated
after 1,250,000 random instructions.

Ile Random Instruction is an excellent test technique; however, tests
cf boundary conditions (like a branch instruction in the last main
storage location) would have to be added to completely test the
l I-STD-1750 architecture. The MlI-STD-1750 simulatcr required would
ave to completely represent the architecture.

Ihe Random Instruction method does not ccntain any vendor dependencies
in its test cases. The only applicaticn dependency in the Random
Instruction method is that the main storage must be large enough to
ccntain the program. If a self-hosted simulator is used in this
rethod the main storage requirement could become quite large.

!his approach passes the defined pass/fail criteria and will be
discussed further in Section 7.

6-8

- _____ __-AAA_

E1761 5A FINAL REPCUT Feruary 29, 1980

E.3 ANALYTICAL APPROACH

Ile following text is a summary of a very complex approach and
requires a background in this field. Further information is available
from appropriate documents located via the Eibliography (listed under
Carter).

E.3.1 Description

This method consists of using an analytical method called Symbolic
Execution to verify that the hardware implementation cf the computer
meets the architectural specification. he hardware ioplementation in
the form of microcode or finite state information is translated into a
machine readable format for analysis by a program which verifies by
Symbolic Execution that it conforms to the architectural
specification. The specification must also be supplied in some
machine readable format.

In this approach two definiticns are required; one for the
architecture specification and the other for the machine
implementation. Both must be given in the architectcral description
language "Language for Symbolic Simulation" (LSS). These definitions
consist of a facility vector describing machine ccmponents and a
,decision tree describing the control structure. The facility vector
specifies the various components which can be observed or manipulated
by the machine. The operations upon the facility vector components
are specified by macro routines written in LSS and the order of macro
application is determined by the control tree operation algorithm.
(That is, each decision tree is composed cf macros.) For example, in
tle following control tree segment

32 M3 ML4

Macrcs M2, M3 and 84 must be carried cut before M1 can begin. Macros
E2, M3 and M4 may be performed in any order. When M2, M3 and M4 have
been performed, M1 is initiated. The facility vector components are
treated by LSS as APL-like variables with specified dimensions.

Because the two facility vectors (specification and implementation)
generally have different components, tc prove ccrrectness it is first
necessary to specify a relation between them. One machine action
simulates another if everything that the first machine can do, the
second can do, though possibly in a different way. The states of

6-9

61761'75A FINAL REPCEI Fetruary 29, 1980

correspondence for the symbolic simulaticn are determined by pairs of
tree control structures called simulation control points, and
predicates. Predicates describe the conditions that the initial
values of the facility vector must satisfy in order to be in a
farticular state. The states of correspondence specify relations
between the components cf the respective facility vectors at these
rairs of points. The set of all machine states pairs and their
relation forms the simulation relation.

Proofs of equivalence generally proceed as follows. For each pair of
corresponding machine states in the simulation relation we must:

1. Assert that the simulation conditions corresponding to each
component hold.

2. Run each abstract machine, following all paths at branch
points and performing symbolic computation until another
machine state is reached.

3. Verify that the new pair of states corresponds to a

component of the simulation relation.

4. Prove that the simulation conditions of this ccmponent hold.

In such an execution analysis for proving equivalence, facility vector
parameters have as initial values either symbolic corstants (sym. -ls
representing unknown but fixed values), cr values determined from the
simulation relation. When symbolic constants are encountered in
eypressions being computed in assignment statements as part of
Symbolic Execution, the value assigned is an expression involvinl
cperators and symbolic constants. This expression is always
simplified combining like parameters.

When symbolic constants occur in predicates evaluated to determine
pcssille branches, a single flow of control may not be able to be
deterrined, since the predicate may evaluate to a Boclean expression
involving symbolic constants, which can not be evaluated to "true" or
"false". In such a case all possible logically independent results of
evaluating the predicate must be considered. The program doing the
symbolic evaluation will now generate a subgoal for each independent
result, add a predicate expressing the truth of the result to the
predicate list, and simplify the result. One path is taken; the
remaining paths will be followed later. (If the predicate involving
symbolic constants evaluates to true cr false, then the preceding
uitivath analysis is not required in that only the one path analysis
need continue.)

After generating a series of sets of subgoals, a simulation control
point for this level is reached. Now it is required that the other
machine is run until a simulation control point for that level is
reached.

At this point, a comparison is made between the specification result
and the implementation result. That is, the program verifies that the

6-10

E17619 FIVAL FEPC?1 Fetruary 29, 1980

rair of control points reached defines a component of the simulation
relation. The values of the two facility vectors are substituted into
tie simulation conditions of this component and, using the predicate

* list, all of these conditions are proved tc hold.

This process is repeated for each of the remaining tranches of the
tree. In the process a ccmplete goal tree is formed. When a complete
goal tree is formed, the analysis has been successful.

It may occur that a ccrrespondence can not be proved and thus, the
gcal tree cannot be completed. Then an error must be sought in the
ccde or in one of the descripticns. In addition the cccurrence of an
unexplained branch will signal the presence of an error.

E.3.1.1 Example

Ihe following example is provided for further illustration of the

concept of symbolic execution:

if X<1 then Y: = 1-X else 7: = X-1

Suppose we wish to prove that after the statement is eiecuted
Y = IX-li. The object of the verification is tc construct a proof
tree. A node in the tree represents a class of states of the system
at one point in time. The root describes all the initial states in
which our program can start execution -- one state for each pair of
initial values for X and Y. The leaves cf the proof tree represent
all the possible final states -- for each leaf we have to prove that
the states represented by the leaf satisfy Y = IX-lI. A branch in the
proof tree represents a computation path.

In our example the tree is first initialized to the following root:

1. facility vector:

X contains v
Y contains w (where v and w are some arbitrary symbols)

2. Predicate: empty

3. Control point: before the if statement. The rcot represents
all those states where X and Y contain some arbitrary values
v and w, which are not constrained by anything (predicate
list is empty), and where the if statement is just about to
be executed.

Symbclic execution is used to construct a tree of nodes representing
states reachable from the root by executing the given program. The
first statement is an if statement. Since our current node (the root)
represents states where v<1 as well as states where v>1 we must split
the execution into two cases (i.e., two sub-goals). Tie first subgoal

6-11

- - p ~ - - _ _ _ -- -

E176175% FINAL REPO'I February 29, 1980

represents those states where v<1. It has the same state vector as
tfe root, its predicate is v<1, and control is just before the
assignment Y := 1-X. The second subgoal represents thcse states where
VI. Again it has the same state vector as the root, its predicate is
v21, and control is just before the assignment Y := X-I. Now we
choose one of these new leaves as the current node, say, the first
subgoal, and proceed. The assignment I := 1-X is executed by changing
tie ccntents of Y to the expression 1-v and advancing the control
pcirt. Since the control has reached the end of the program we are
stppcsed to prove the assertion Y = X-1I. Or, more exactly, it must
be proved that the assertion holds in every state represented by

1. facility vector:

X contains v
Y contains 1-v

2. Predicate: v<1

3. Control point at the end of prcgram (actually irrelevant for
correctness).

lherefore we must prove that the predicate v<1 implies the assertion
with X and Y replaced by their contents. And that is the verification
ccndition

v<1 implies 1-v = Iv-l[,

whicl is clearly true. In an analogous way we obtain from the second
case the verification ccnditicn

v 1 implies v-1 = v-il,

which is also true. In the above example our simulation relation
wculd consist of two components. In the first ccmponent the stopping
rcint identifies the beginning just before the if statement; the
associated assertion is true (i.e., no assumption about initial
values). In the second component the stopping point identifies the
end just after the if statement; the asscciated asserticr is
7 = IX-1I. Thus, the goal tree is completed.

6-12

E176175A FINAL REPCPI Fekruary 29, 1980

(.3.1.2 Functional Diagram

A functional diagram does not apply for this approach.

E.3.2 fxpe enge

This method is currently being investigated by Dr. W. Carter at IB's
PesEarch facility in Yorktown, New York.

6.3.3 Hardware Resources

This method does not require any specific hardware resources.
(However, it does presuppose a computer is available with support of
tie ISS system.)

E.3.4 Scftware Resources

Each vendor's implementation as well as the architecture specification
wculd have to be described in a machine readable format such as LSS
(language for Symbolic Simulation). Alsc each vendor's implementation
wculd require a different definition of the simulation relation.

6.3.5 Personnel

This method requires personnel who are highly trained in the area of
simulation, and are familiar with architecture description languages
such as LSS.

6.3.6 Observations and Aplicabilitv to Mil-STD-1750

Ihis approach shows much promise for prcviding a very ccmplete design
verification of the architecture. It would also allow designs to be
verified before hardware was built. Since each of the possible paths
it the proof tree are followed for both the architecture specification
and the hardware implementation, the method will generally catch
subtle second order effects.

6-13

A.&". .-

6176175A FINAL SEPCET Fetruary 29, 1980

ihis could be a very high ccst approach since each vendor's
iuplementation would have to be described in a machine readable
format. Also, the risk in using this arproach is verl high because
vErification using this approach has not yet been demonstrated.
Ancther problem is that this method verifies that the abstract
definition of the hardware conforms to the formal specification. It
does not validate that the intended functicns of the architecture are
tuilt into the hardware. The actual hardware would still need to be
clecked for wiring errors, noise, timing races, etc. Certification
would require some type of further testing.

Due to the nature of the tools required, this method is judged not
feasible at this time, and will nct te considered for further
analysis.

6-14

-_ __ A&

E176175A FINAL FEPCE7' Fetruary 29, 1980

E.4 ARCHITECTURAL VERIFICATICN PBCGAM - SYSTEM 360/370

6.4.1Decito

Ihe IBM System/360 architecture verificaticr approach consists of a
set cf programs which allow test cases to be written in a rrocedural
language. These test cases are stcred on magnetic tape. A
supervisor, which is resident on the ccmputer whcse architecture is to
te validated, reads the test cases from the tape, executes them, and
clecks for correct results. Any errors found are printed out.

A test case is written to test each item cf the architecture. Each
test case is similar to *hat an engineer would normally enter by hand
tc test the same function. Each test case contains the setup and
expected results for testing one characteristic of cue instruction.
In some cases, primarily I/O, more than one instruction is required
fcr proper execution. Each test case is written in such a way as to
test cnly one function at a time. The supervisor program automates
tle process by setting up the system, executing the test case, and
ccmparing the expected to the actual results.

The supervisor is a 4K stand-alone program which requires a printer,
c:nsole, and some type of mass storage. In testing I/O channels,
Extensive use is made of a program controlled I/O Adapter to force
parity errors and specific I/O line sequences. This supervisor reads
test cases from tape, and then sets up all general purpose, floating
pcint, and control registers, and low core and main storage as
specified. It then executes the test case instructicn and initiates
ccmparisons with the expected results. Comparisons include any
storace areas specified; all general purpose, control, and floating
pcint registers; and all of low core frcm addresses 000-1FF. Input
test cases are bypassed if they require features that are not on the
machine being tested. Unless ctherwise specified in the test case,
all instructions are repeated via the 1XICUIE instruction to test this
feature of the System 360/370 architecture.

For successful cases, the test case number is printed out for
documentation purposes. When an error is detected, the supervisor
prints out both the expected and the actual results for the failing
comparison. Only the error data is printed and, in crder to analyze
the problem, it is necessary to refer to the test case listing.

Tie verification program is initiated by loading the supervisor
program from a card reader or frcm tape. When loading is complete,
the system enters a wait state. The user console is used to start
execution. The console can also be used to input additional test
cases when desired.

6-15

E176175A FINAL PEPOPI Fetruary 29, 1980

E.4.1.1 Block Diagram

Figure 6-3 depicts a hardware block diagram for this approach.

Console

Control and
User Input

Printer Computer Forces Parity

Under I/0 Errors and I/0

Prints Errors Test o Test Sequences
4K Supervisor

Mass Storage

\Test Cases __________

Figure 6-3. IBM System/360 Architecture Verification Elock Diagram

6.4.2 Fxerience

This method is used by IBM to validate the System/360 architecture on
all IBM 360/370 computers. This method is extremely successful as
demonstrated by success of the Systen 360/370 architectural
compatibility.

E.4.3 Hardware Resources

This rethcd requires the use of an I/O Adapter, which simulates I/O
ciannels, to permit the testing of the 360/370 I/O channels and CPU
instructions which affect the channels. A direct I/C wrap cable is
also required to verify the direct control feature. A console,
rrinter and some type of mass stcrage are also required to execute the
test cases.

6-16

6176175A FINAL PEPCPI F~truay .9, 19uJ

6.4.4 Software Resources

This method requires a control program (which is run cn ttie computer
under test), the test cases, and support Frcgrams to update the test
cases.

E.4.9 Personnel

A person who is experienced at architectural verificaticn i-s elltr!
tc write the test cases. The actual exEcution of the test cases can
be performed by a relatively inexperienced Ferscn. A perscn
experienced in architectural verification cculd he recuireG for error
analysis, although error analysis is probably a contractor's
responsibility.

E.4.6 Observations and Apnlicabiliy tc MIL-STr-1750O

7.his aunroach relies on a large number cf test cases ard experience to
provide for thorough testing of the architecture. If a sufficient
number of test cases are used, it can prcvide a very thorough method
to verify an architecture. The evidence of its success is the bhgn
transportability of utilities and user Frcgrams amcng members of the
System 360/370 family. Due to the nature of the test cases and the
structure of the supervisor, additional tests could easily be added to
tle verification program.

This method's greatest drawback is that the test cases must be
generated manually. The appropriateness of the test cases generated
depends on the insight of the person writing them. During the initial
use of this method, many features cf the architecture may remain
unverified, but as problems are found and test cases tc uncover these
rroblems are added, the thoroughness of the approach increases. After
sufficient time has passed, this approach can mature tc provide a very
thorough method of verifying an architecture.

This method allows extensive testing in a "quiet" environment. It
does not provide a facility to test interaction between channels or
tetween channels and the CPU. This method tests all aspects ot each
irstruction with the exception of data dependency. An attempt is
made, however, to use data that either has caused prclems in other
systems or is suspected of being critical. Since a test case for
every bit combination for each instruction would he astronomical, any
data dependency situations that are suspected are coded up and added
as they occur.

This method could be used to provide a vendor and application
irdependent verification of the MIL-SID-1750 architecture. The

6-17

AL,
o

t s~~~ ti t t Lt edsj k i t>11 '~ rae I w -thC) ~L)Ua e1\

ir A d IIt0 L d I tCSt. CU1j'MfE t would~ havc to bk- i Ui It tc Verify aisy

tailurfeS LzIL ttbc ddtQ a oSCjacted W itl t t~iould khavc to ic FILovidecO.
,,IF dt~tL~dCL Pd ss s t 1 E tL ~ae v Pa s Efa i I Literia dLC %.111 re
CC~i!CrC- IULtnlei .1L Scctior, 7.

6-18

F176175A FINAL PEPCFI Fetruary 29, 1980

F.' € IAGNOSTIC

6. C. 1 Desczjt ion

1Ihe Diagnostic approach to architecture verificaticn is to make use of
tt irlividual manufacturer's diacnostic rrcgrams. The verification
rroraT £S Credted by taking the diagnostic Frograms and removiti
" rlware iz iementation dependent tests frcm them and using cnry the
r '.1aila Parts that are functicnal ir. nature. Eccause of this
removal or hardware dependent tests, scme additional tests may need to
te written in ovier to ccmpletely verify the architecture.

The Diagnostic method consists of taking each manufacturer's
diagncstic program for his computer and combining them into one
architecture verificaticn prcgram. The individual diagnostics cannot
Le taken in total, since they may ccntain implementation dependent
tests. That is, various manufacturers may have microcoded Euilt-in
Test Ecuipment (BITE) tests or additicnal hardware features, (not
'efirea in MIL-STD-1750) to increase the diagnostic capability ot the
ccmruter. Aitnoag all computers are MIt-S'D-1750 compatibie from a
user's viewpoint, they are not identical frcm a diagncstic viewoint
since the hardware implementation is different. Therefore, the
manufacturer's diagnostics must have all non-MIL-STE-1750 hardware
iaplementation depeudent differences removed from them. Once this is
dcr-, the diagnostics will run on any MII-S'!D-1750 computer. However,
t he removal of the implementaticn dependent tests decreases the
coverage of the resulting Diagnostic architecture verification
prcgram. Additional tests may then have to be added tc restore the
coverage to an acceptable level.

6-19

E176175A FINAL FEPCFI FEtruary 29, 1980

(.r.1.1 Block Diagram

Tioure 6-4 depicts a hardware blcck diagrar for this aFproacn.

Computer
GSE Under /0 ForcesTester Test Tester Parity Errors

and I/0 Test
Sequences

Program Load Diagnostic
Program Control

Figure 6-4. Diagncstic Elock Diagram

E.5.2 Experience

!e architecture of the advanced Signal Processor (ASP), %hicL was
developed by the IBM Federal Systems Division in Manassas, Virginia,
uas verified by using the Diagnostic arrrcach. This method was also

; Eed by the Army/Navy Computer Family Architecture project in
verifying the PDP-11/70 computer architecture.

6.5.3 Hardware Resources

-irce various manufacturer's have added ricroccde and/or additicnal
iarduar- tc augment the diagnostic capability of their computer, it
wculd be userul to use those features ir verifying the arc~iitecture.
Fcr example, if a manufacturer implemented a means of setting bits in
tle Interrupt Pending Register, this feature could be used to assist
in verifying the interrupt priority structure. However, to be of use
in architecture verification, the feature would have tc be implemented
ty all manufacturers. This means that the feature would have to
tEcome part of MIL-STD-1750. Therefore, this method right require
etensicns to MIL-STD-1750 rather than special additicral equipment.

6-20

E176175A FINAL FEPCFI FetruaLy 29, 1980

6.-.4 Software Resources

The software resources required by this method are the Jiagnostic
programs designed by each vendor. These programs would be used to
produce the Diagnostic verification program.

F. .C Personnel

A person experienced in architectural verification with some
u:nderstanding of diagnostics would be required to design the resulting
program. The actual executicn of the method can be Ferformed by a
relatively inexperienced person. A person experienced in
architectural verification could be required for error analysis,
although error analysis is probably a contractor's responsibility.

6.5.6 Cbservations and Applicability to fIl-STT-1750

A disadvantage with this method is that it relies or the diagnostics
to be written in a functional, rather than a hardware-oriented method.
This could result in the diagnostics beccming much larger and more
costly than might be justified. Combining functional diagnostics from
several vendors may or may not provide ccmrlete verification and would
certainly Frovide several redundant tests.

Tle Diagnostic method provides a good source of data to test the
critical points of algorithm implementation by various vendors.
Bowerer, significant effort would be involved to remove implementation
dependent tests from each vendor's diagnostic and then to combine the
various diagnostics into one Diagnostic verification program. Also,
this resulting Diagnostic program wculd have to be evaluated to
determine if removing the implementation dependent tests seriously
ccmprcmised its usefulness. If this was found to he the case,
additional effort would be required to formulate additional tests to
provide better coverage of the architecture.

Tte Diagnostic method starts out inherently vendor dependent. Each
tiagnostic program has test cases which make use of implementation
dependent hardware features and knowledge of the implementation to
reduce the number of test cases. However, these dependencies could be
removed to provide the final Diagnostic verification program. The
coly application dependency in the resulting Diagnostic method is that
the memory must be large enough to contain the program.

6-21

! .. i
-,

,, - * - ' - • . .

E176175A FINAL PFPCPT Fetruary 29, 1980

If extensions were added to MIL-STD-1750 to include EITE facilities,
it might be possible tc use vendor's diagnostics without extensive
rcdification.

This method passes the defined pass/fail criteria and will be further
discussed in Section 7.

62

6-22

-7-----

6176175A FINAL REPCPT February 29, 1980

E.E FUNCTIONAL TEST PROGRAM

6.6.1I Descri tion

The Functional Test Program (FTP) approach verifies the architecture
by performing functional level testing of the ccmplete instruction
repertoire, the main storage, the I/O, the interrupt structure and the
ccncurrent functions. The instruction repertoire is verified by
exercising all instructions and their fcrmats as defined in the
architectural specification. The architectural specificaticn
describes each function to the level of detail that must he understood
in order to prepare an assembly language program that relies on that
function. Instructions are exercised usinq all addressing formats,
registers, interrupts, and condition codes. The main storage, I/C,
and interrupts are also tested by exercising their functions as
defined in the architectural specificaticn manual. Test equipment is
required for the man/machine interface (contrclling, loading) and
causing interrupts, I/O and exception sequences.

The FTP method uses a center cut a~prcach to instruction set
verification. First, a core set of instructions are verified. This
core set is then used to verify the remaining instructions. Although
all addressing formats, registers, interrupts and condition codes are
exercised, the testing is not exhaustive for all data patterns. The
necessity of exhaustive testing is eliminated by krcwledge of the
hardware implementation. Also, because the FTP is used to debug the
hardmare and for environmental testing, it must be of a manageable
size and cycle in a short period cf time. This, therefore, precludes
tle use of exhaustive testing.

Tle method used for main storage testing is dependent on main storage
usage. Normally, the read/write porticns cf the main storage test do
not check the portions cf the main storage in which the test routine
and supervisor reside. These parts cf memory are checked by
clecksums. This is due to the restriction that the complete FTP be
contained in the main storage at all tiaes.

ITe verification of I/O, interrupt structure and concurrent function
is aided by the use of specialized testers. The tester stimulates the
eiternal inputs and the FTP verifies the proper operation of the
computer. For external outputs, the FP generates the outputs and
they are stored in the tester for later analysis by the FTP. This
requires that there be an I/O tester interface between the tester and
the computer under test. The tester is also able to generate a number
of error conditions so that proper operaticn of the computer can be
verified.

The FTP also exercises all Built-In-Test Ecuipment (BITE) hardware for
proper operation and to detect any hardware failures.

6-23

E176175A FINAL FEPOPT February 29, 1980

Ground Support Equipment is required for program loading, control and
Error retorting.

6.6. 1. 1 Block Diagram

Tigure 6-5 depicts a hardware block diagram for this approach.

GSE
Tester Computer Forces

Under Te0 e Parity Errors
Test Tester and

Program Load I/0 Test Sequences
Program Control

FTP
Supervisor and
Test Cases

-igure 6-5. FTP Blcck Diagram

E.6.2 Experience

The TPM Federal Systems Division has made extensive use of this method
for verifying many ccmputer architectures. The FTF is used as a
development tool to verify that the hardware implements the
architecture. In addition, the FTP is used as part cf the Customer
Acceptance Test Procedure, as a reliability demonstraticn tool, and as
an engineering evaluation tocl during hardware bring-ur.

6.6.3 Hardware Resources

The FTP method requires a specialized tester to verify I/O operations,
tte interrupt structure and concurrent operations. This tester is
designed for a particular corputer and I/O configuration. Also, the
ccmputer must have a special interface to the tester Ec that the FTP
can control the tester. In addition, Ground Support Equipment is
recessary for program ccntrcl and error repcrting.

6-24

Odo

6176175A FINAL PEPCPT February 29, 1980

6.6.4 Software Resources

The software required for this method is the Functional Test Program
itself. Since the test cases are imbedded in the program, no special
facilities are required to add or update test cases. However, this
makes the addition or updating of test cases more time consuming
because parts of the FTP would have to he reassembled and relinked.

6.E.5 Personnel

A person who is experienced at architectural verification is required
to design the FTP. The actual executicr of the FTP can be performed
by a relatively inexperienced person. Error analysis could require a
person with a high degree of training in architectural verification,
although error analysis is probably a contractor's responsibility.

E.6.6 Cbservations and Aplicability to MII-STD-1750

This approach has been used by the IBM Federal Systems Livision to
verify its military computers. If the implementation of the
architecture is known, then use of the FTP method for verification
yields a high degree of confidence at a reasonable cost.

In ILtM's Federal Systems Division experience, about 90 percent
(coverage) of the hardware will be exercised if only the architectural
specification is used to develop verification tests. The reason is
that certain instructions can be implemented in different ways, each
cf which yields correct results but which might require different
types of tests to see that no implementation error has been made. The
IEM Federal Systems Division has found that FTPs cover better than 99
percent of the hardware after utilizing implementation information.
If a general purpose verification tccl is tc be developed like an FTP,
more exhaustive testing will be required given that the methods of
implementation cannot be predetermined.

6-25

6176175A FINAL PEPCPT Fetruary 29, 1980

7be FTP method can provide a very cost effective mettod to verify a
ccmputer architecture. However, to be effective in a multiple vendor
e nvircnment, tests must be enhanced tc make the testing more
Eihaustive since the hardware implementation is no lcnger known. An
existing F[P may contain some vendor dependencies in its test cases.
Fcr example, the use of a Diagnostic instruction or EITE hardware
facilities would make an FTP vendor dependent. However, these test
cases could easily be removed. The only application dependency in the
FIP method is that the memory must be large enough to contain the
Frcgram.

71is method passes the defined pass/fail criteria and will be given
ftrther consideration in Section 7.

6-26

E11615A FINAL !EPCRT February 29, 1980

6.7 INSTBUCTION SET PROCESSCF

6.7.1 Description

Ile Instruction Set Processor (ISP) approach consists or first
specifying the architecture of a machine in a Computer Hardware
tescription Language such as Instructicn Set Processor Specifications
(ISPS). This ISPS description must include all of the information
rcrmally found in the architectural Epecificaticr marual. The ISPS
specification is then used as input to a program which automatically
produces test cases for a verificaticn prcgram. This verizication
program is then executed on the computer to verify conformity.

To date, most Computer Hardware Description language research has used
the ISP family of languages in the areas cf description, simulation,
hardware synthesis, software synthesis and verification. Although
other Computer Hardware Description Languages could be used for this
apprcach, we will focus cn the latest versicn of ISP (ISPS).

:SPS was developed by Carnegie - Mellcn University to describe
precisely the program level of a ccmputer. The ISES description
provides a standard, unambiguous description that can be used to
specify future software/hardware development and this description also
provides a vehicle for defiring the recuired inforiation used for
testing the architecture. An ISPS description defines the storage
elements and sequences of operations cf a processor. An ISPS
description consists of a block of storage declarations and sequences
cf register or control transfer operations.

The storage elements include storage available to the programmer
(e.g., general registers and main storage) and local storage for the
processor (e.g., internal registers like program status). The
sequence of operations includes sequencing control of the data
operations, and specifies how the processor fetches, decodes, and
executes instructions. Storage elements are organi2ed information
structures; for example, a main storage might consist cf a number of
%crds, each of a number of characters, each of a number of bits, or a
register might consist simply of a number of bits. Storage elements
are defined in ISPS by a name and description of their structure.

Main storage is referenced, other than in storage declarations, by its
name, qualified by an index if it is a multiword main storage.
Multiword main storages must he accessed using an arithmetic
expression. Main storage references can be further qualified with a
range of bits to be selected.

Fegister transfers are used to describe the data operations on storage
elements. Since most operations in a computer result in modifications
cf bits in storage elements, each action in a data transfer sequence
takes the form:

6-27

E176175A FINAL PEPCF! :Ekruary 29, 1980

storage-expression<---data-expression

7he data-expression describes the transfcruaticn of information and
tYe bit pattern tnat is tc be placed in the storage element designated
by the storage-expressicn. Data operators in ISP include transfer,
relational, arithmetic, Boolean, shift and concatenaticn operators.
All data operators assume unsigned binary representatict.

Tle evoking of actions can be contrclled by conditional actions of the

form:

(If condition => acticn-sequence)

were the condition (a Boolean expression which is either false or
true, where false is defined as 0 and true as any ncn-zero value)
describes when the action-sequence will be evcked, and the
action-seguence describes what transformations take place on what
elements.

Ibhe capability to select one of a list of alternative statements to he

eiecuted is provided by the DECODE statement:

DECODE expression = statement-list

ulere the value of the expression is interpreted as ar integer and
tsed to select one of the alternative statements in the
statement-list. The alternative statements are nct ccnsidered to be
ccncurrent activities, but are a list of statements where the ith
statement is executed if the value of the expressicn is equal to i.

Ite infcration contained in the ISP description is used as input to a
test cenerator program which determines, from the storage declarations
and register control transfer operations, what tests are required for
each instruction or operation, and then generates assembler level code
covering these test requirements.

She test requirements consists of checks for the following:

The functional results
Values in registers used and unused
All required interrupt mechanisms
Main Storage locaticns, both used and related
Condition codes, set or unaffected
Error indicators
Order of occurrence of predicted events
Possible interference due tc simultaneous I/O and/cr interrupts.

Sufficient data patterns uould have to be either provided to the test
cenerator as input or be created by the generator.

6-28

6176V7SA FINAL FEPCPI FEtruary 29, 1980

TIe generated test program is then Executed to verify that the
ccmputer meets the descripticr..

Grcund Support Equipment is necessary for prcgram loading, control and
error reporting.

E.7.1.1 Block Diagram

Figure 6-6 depicts a hardware diagram for this aFrcach.

Computer
Under
Test

GSE 1/ ocsParity
Tester Tester Errors and I/0

Test Sequences

Program Load ISP
Program Control Verification

Program

Figure 6-6. ISP Blcck Diagram

6.7.2 Experience

ISPS has been widely investigated by the research ccmmunity as a
vehicle fcr computer hardware description. IBM is currently
developing automatic test generaticn methods to verify architectures
because they show much promise for future use. At tle present time,
IEM is developing PL/I programs which generate assembler level code to
test limited sets of instructions for the MIL-STE-1750 and NATO AWACS
architectures.

6.7.3 Hardware Resources

The ISP method requires a specialized tester to verify I/O operations,
the interrupt structure and concurrent CP and I/O oFerations. This

6-29

_ __..m ' - . -... - - - -- ,'T .

E176175A FINAL FEPCFT Fetruary 29, 1980

tester is designed for a particular ccmputer and I/C configuration.
Also, the computer must have a special interface to the tester so that
tle tester can be controlled by the Test program. In addition, Ground
Suppcrt Equipment is necessary for prcgram control and error
reporting.

6.7.4 Software Resources

A complete and unambiguous description of MI-STE-1750 must be written
in ISP. The software required to generate the Test prcgram is a high
crder language program capable of generating all necessary tests from
key words and symbols in the ISP description; but it doesn't exist and
needs to be written.

E.7.5 Personnel

A person who is experienced in architectural verificaticn and compiler
develcpwent techniques is required to write the prograv for the test
cenerator. The actual execution of the test cases can le performed by
a relatively inexperienced person. Error analysis could require a
person with a high degree of training in architectural verification,
although error analysis is probably a contractor's resronsibility.

E.7.E Cbservations and A .licability to f'l-STD-17EO

Ihis approach shows much prcise for providing a very complete
verification of the architecture, but still has the "all possible
combinations" limitation. However, at this time, it has a hioh risk
factor associated with it, because all cf the tools needed for its
irplementation have not been completely develore9. She benefit of
this approach is that it could be one cf t most rigorous and
tforough verification methods.

A cood deal oi benefit could be gained by using a Ccuputer Hardware
tescription Language to define the MIL-STt-1750 architecture even if
auto test generation was not attempted.

A difficulty with the ISP method is that Ccwputer Hardware Description
languages are still research tools. The success of the method will
depend on the maturity and quality of the language used. ISPS is
known to have some inconsistencies and ambiguities stemning primarily
frc the lack of a clear, precise, formal semantic definition of the
language.

Ancther problem is that automatic test generation programs are also in

6-30

E17617A FINAL FEPCP - Fetruary 29, 1980

the research stages and have nct yet teen used to cer:erate I/c or
irterrupt tests.

t.IL-STD-1750 would need to be defined in terms cf IEP and the test
ceneraticn program develcped for the MII-SMD-1750 architecture.

lie testing techniques used in the ISP approach are similaz to those
u-ed in FTP and AVP approaches. The main difference is that the
architectural analysis effort is applied in writing a high order
language program which can determine, from the architectural
description in ISP, all the tests that are needed tc validate the
architecture. This approach is not considered tc be feasitie at this
time since the tools required are still in the research stace. For
this reason the ISP method fails the pass/fail criteria and it uiii
nct be considered for further analysis.

6-21

U

E1'76115A FINAL FEPCFI Fetruary 29, 1980

E.e LOCKSIEP

(..1 Description

Ile locKstep approach consists of comtaring the computer under test
against one which is defined as conforming to the architecture. The
procedure consists of running an identical program on ccmputers which
are synchronized to each other. Synchronization can he at any timing
level or machir, state. The test equipment then verifies that both
computers produce the same results at each synchronizing point. Since
cne cf the computers is defined as meeting the architecture, if both
produce identical results when running the same Frccram, then the
second computer also meets the architecture.

For a complete understanding of the lockstep method, the facilities
Trcvided by the Trace interrupt must first be understcod. The Trace
interrupt, if enabled, will generate an interrupt after the execution
cf each instruction. This enables the software to Trace the execution
cf the program. In addition to generating the interrupt, the hardware
also stores data concerning the state cf the ccmputer into fixed
storaae locations. The data saved includes: the instruction counter,
storage address register, condition status, and the ccrtents of all
Eneral registers. This data can then be used by tle software to

trace the execution of a program. Ile data stored by the Trace
irterrupt concerning the state of the computer is the most importan
tart of the Lockstep method.

The lockstep method consists of two cofruters, one previcusly verified
ty some method, which is called the "colden" computer and runs the
tests, and the other computer which is the one tc be verified. The
"golden" computer loads the test to be run from the diskette and
informs the computer under test via a serial channel which test to
Icad fror its own diskette. The test is run on both ccEputers and the
Irace results are saved in a buffer after the executior of each of the
test case instructions. Once the test case is executed, the "golder"
computer then reads the buffer from the computer under test via tie
serial channel. It then compares the results obtaired from the
computer under test with its own results to see if the Trace data is
identical. Any differences in the Trace data indicate an error and
the nisccmparing data is rrinted out.

Ecth computers have a real-time operating system running in then.
Executing under this oper.ting system is the program which selects the
test cases to be run, communicates with the other computer, and
compares the Trace data.

6-32

6176175A FINAL REPCET FEhruar 29, 1960

6.8.1.1 Elocx Diagram

Figure 6-7 depicts a hardware block diagram for this aEFroach.

FrcesI/O - _.Parity Errors __ I/0

Tester and Tester
1/0 Test Sequences

Control for
"Golden" Computer

Terminal - Terminal

Printer "Golden" Computer Under Test
Computer Under

Control Program Diskette

Control Program Test Cases
STest Cses

Figure 6-7. Lockstep Elcck Diagram

6.8.2 Enrieence

71e I?- Corporation has used this method to verify that all Series/1
ccmvuters comply to the Series/1 architecture. It was also used ty
the IBM Federal Systems Division cn the Verdin Ccrrelator and Space
Shuttle 1/O Processor.

...... -i .--'.'--,

(17617 5A FINAL FEPCPT FEtruazy 29, 1980

6.F.3 Hardware Resources

'This method rc'.uires a "golden" computer as well as hardware within
the computer under test to implement the Trace facility. This Trace
hardware would not be difficult or expensive to design in a new
ccomputer, but it could very difficult to add on to an existing
computer. In addition, scme type of harduare tester is needed to
cleck I/O. Also, the computer must have facilities for attaching a
CFT terminal, some type of mass storage (e.g., diskette), and a serial
clannel.

6.8.Q Scftware Resources

This method requires a real-time operating system to perform all
ccmmunication with the peripherals. A ccntrol program, and the test
cases to be executed are also required.

.E._ Pcrsonnel

A person who is experienced in the design of real-time operating
systems is required to design the operating system and the control
program. A person experienced in architectural verification is
required to design the test cases. The actual executicn of the method
can be performed by a relatively inexperienced person. A Ferscn
exrerienced in architectural verification may be recuired for error
analysis, although error analysis is probably a contractor's
responsibility.

6.F.6 Observations and Applicability to MlL-STD-1750

The hardware Trace facility allows the ccmpariscns between the two
ccrputers to be very detailed and thcrough. This means that the
verificatico procedure will have a high degree cf confidence. Alsc,
crce started, the procedure is completely autcated, and so an
coerator need not be present when the test is being run.

'he maior diZadvantage with this method is that the first computer
(gclden) must be verified by some other method. Also, the test cases
mnst te generated manually. This reans the guality of the test cases
is determined by the person developing them. If the Trace interrupt
facility is not part of the architecture, the addition of this
facility tc the architecture could be a zajor problem.

The test case generaticn and execution Fart of this procedure is

6-314

E176175A FINAL REPCRT Fetruary 29, 1980

similar to the System/360 AVP method. The main difference is the
TBACE interrupt facility and the use of a second cosFuter to comi-aie
results. It is possible tc mcdify this method sc that only the
ccmputer under test is needed. Instead of comparing data to that
generated by the "golden" computer, the "golden" computer's data can
te stored on an external device (diskette) and the computer under test
can ccmpare its data to the stored data. This would require a larger
mass storage device. The Lockstep method does not contain any vendor
dependencies in its test cases; however, unless the Irace interrupt
facility is standardized in the architecture, vendcr dependencies
could arise in the contrcl of the test program. The cnly application
dependency in the Lockstep method is that the memory must be large
er.cuch to contain the prcgram.

This method passes the defined pass/fail criteria and will be givel.
ftrther consideration in Section 7.

6-35

E176175A FINAL BEPOPI FEhruary 29, 1980

E.S SUMMABY

Ihe eight approaches described above are summarized in Table 6-i.
They can be grouped into four different generic types. These types
are Functional, Random Instruction, lockstep, and Analytical. The
functional type consists of the Functional Test Program, Architectural
Verificaticn Program, Acceptance Test Program, Diagnostic Program, and
the ISP method.

'he Functional type of verification procedure consists of a program
,ahich verifies the architecture by executing a number of test cases
which test the architecture at a functional level. The origins of the
prcgram vary depending on the method used to generate the functional
type test. The Functional Test Program (FIP) method starts with the
TTP which is used to debug the hardware and generalize it. The
Architectural Verificaticn Program (AVP) method uses the AVP which is
more ceneral and more exhaustive then the FTP. She Acceptance Test
Program (ATP) method uses the ASP which is usually somewhere in
between the FTP and AVP in generality. Ile Diagncstic Program starts
vith the diagnostics for the hardware and attempts to generalize them
and remove any implementation dependencies from the test. The ISP
method attempts to generate functional tests automatically from a
detailed description of the architecture. The ISP method is an
automated AVP.

The Random Instruction type consists of automatically generating
random sequences of instructions, executing them, and verifying that
the proper results are generated. The expected results are determined
by simulating the random sequence of instructions on a simulator. The
rain effort in this approach is to design a simulator %hich models the
architecture as closely as possible. The architecture must be modeled
%ith sufficient accuracy so that the simulator and actual hardware
give idertical results.

The Lockstep type consists cf running a functional type test program
cn two computers and comparing the results of the test run on the two
ccrputers. To aid in the testing, a hardware trace facility is added
to the computers. This facility allows all pertinent data concerning
tle state of the computer to be saved after the execution of each
instruction. This state information is saved after the execution of
Each instruction of the test case and compared between the two
ccmruters. The main effort in this approacl is the iaplementation of
tle trace hardware and designing and codir. the functional type test
program.

'The Analytic Research type consists of converting the architectural
description and the implementation (microcode and/or lcgic diagrams)
into symbolic language descriptions and symbclically executing both to
verify that they produce the same result. This method relies on
ccmrlete descriptions of both the architecture and the implementation.

6-36

6176175A FINAL FEPCPI FEbruary 29, 1980

4z

Q2o

2 2z
-~ cow I o C

wJ~ Luww

4.4~ a4

-~2 z z ~

w
2

L w u 00>. w . a~
04u- <o ~~ wr 0Z -:zt w3

0u

w 42

w

> 2

L" .0 0 u

o c 0u 22
z 0 >

w0 u a wu U L u L

-- 2

6-3

6176175h FINAL REPCP'I Fetruary 29, 1980

'he main effort in this approach is in ccnverting tc the symbolic
language and executing it. It is important to realize that this
ivethod verifies the intended implementaticn (the logic) not the actual
hardware. Also, this method could be used for verification before the
actual hardware is built.

6.9.1 Pass/Fail Evaluation

The approaches were evaluated using Vendor Independence, Application
Independence, Feasibility, Uniqueness from other approaches,
Availability of Information, and Testability within a two week period
to determine viability for use as a verification apFroach with the
fcllowing results.

Two approaches, the User Oriented Microprocessor PIP and the Adam
ATP, were eliminated due to lack of information. However,
indications are that they are similar to the AN/AIK-15A ATP.

Although the Functional approaches yield similar verification
approaches, none of the methods were judged to he significantly
similar to another to justify failing them since each of the
functional methods meet different design requirements.

here were some application and vendor dependencies in some of
the methods. However, these dependencies were ccnsidered to be
correctable.

Two approaches, the ISP method and the Analytic method, were
eliminated due to feasibility. These were eliminated because the
tools required to implement the methcd were nct sufficiently
developed for use at this time or in the near future.

Table 6-2 further summarizes the pass/fail analysis presented in this
sEcticn.

6-38

E16115A FINAL PEPCFI Fetruary 29, 1980

Table 6-2. Pass/Fail Analysis

Method Pass/Fail Failure Criteria Ceneric Type

Adam ATP Fail Not Unique* Functional
AN/AYK-15A ATP Pass Functional
PandcI Instructions Pass Fandom

Instruction
Analytical Approach Fail Not Feasitle Analytical
.v F Pass F unctional
Diagnostic Pass Functional
FTP Pass functional
I-P Fail Not Feasible Functional
locksteD Pass Icckstep
User Oriented Fail Not Unique* Functional

Micro Computer (ATP)

* Subset of AN/AYK-15A ATP

6-39

E176175A FINAL FEPCPT Fetruary 29, 1980

THIS PAGE INTENTICVAllY lfT BLANK

6-40

E176175A FINAL PEPCR7 fetruary 29, 1980

7.0 ANALYSIS

The previous section provided detailed descriptions of the different
verification approaches and applied the pass/fail criteria to them.
This section provides, for those verificaticn approaches that remain,
detailed cost information and the quality data, as required by the
ccst model. These data are analyzed and the results interpreted.

This section consists of four parts. The first discusses the various
test configurations. The second presents cost data for the different
verification approaches. Next, the quality data is presented and
analyzed. finally, conclusions are drawn based on the first three
sections.

7.1 TEST CONFIGURATION

Each verification approach may be implemented utilizing a variety of
test configurations. For reasons cf Tracticality the following
generic test configurations have been identified as being
revresentative of all possible test configurations in degrees of
corplexity:

Manual - minimal hardware configuraticr

Automatic - simple I/O, self-hosted contrcl

Master/Slave - auxiliary processor to support testing.

Ile Manual Test Configuration will be discussed first, followed by the
Master/Slave Test Configuration. The Autcmatic Test Configuration
will be described last, with arguments presented for ccnsidering it as
a subset of the Master/Slave Test Configuration. Each test
configuration is further broken down into hardware and software
ccmponents. Vendor suplied and Air force supplied items are
separately identified. Cost items are alsc identified as applying to
either the vendor or to the Air Force.

7.1.1 Manua Test Configuration

7.1.1.1 Description

The Manual Test .onfiguration is, by definition, the ainimal hardware
configuration necessary tc perform adequate self-documenting
verification to the MIL-STD-1750 architecture. The test configuration

7-1

E176175A FINAL PEPCF February 29, 1980

recuires all hardware to be supplied by the vendor, and makes n(
equipment requirements of the Air Force other than tie power to runthe test equipment and computer. The hardware necessary for the

manual configuration is as fcllows:

a BIL- STD- 1750 Computer

0 Ground Support Equiment including the fcllowiLg:

- Memory Load Facility

- Hardcopy Device (Printer cr ypewriter erminal)

- Memory and Register risplay/Modify Facility

- Program Start and Stop/On Ccmpare Facility

Figure 7-1 depicts a typical Manual Testing Configuration. Software
is supplied by the Air Fcrce and the vendor. The architecture
verification program for the MIL-STD-1750 is developed by the Air
Ycrce, assuming a standard subroutine linkage for output messages totie vendor supplied hardcopy device. The vendor must develop the
output subroutine.

Operator's
Control Panel

Load Computer

Figure 7-1. Manual Test Configuration

7-2

f116115A FINAL BEPCE . Fetruary 29, 1980

Ile certification scenario would then he as follows:

1. The Air Force gives a copy cf the verification prograz
source code to the vendor and an output sutroutine
specification.

2. The vendor develops the subroutine to handle hardcopy
output, and then prepaLes the load tapes by assembling
source and link editing with the cutput subroutine.

3. The vendor brings the computer, test equipment and program
load tapes (ccntaining lcad modules of the verification
program) to SEAFAC.

4. Under SEAFAC observaticn the vendor first clears main
storage to all zeros (which the Air Force verifies), and
then loads and executes the verification program which
prints out the results.

5. Various random memory locations are inspected to verify the
integrity of the verificaticn prcgram cn the load tape.

E. The vendor leaves the load tapes and assemtler/iink editor
listings with SEAFAC for archive rurposes.

7.1.1.2 Analysis

The Manual Test Configuration offers a lcw cost testing environment
for the Air Force to conduct the MI-SD-1750 certification process.
The hardcopy device provides automatic self-documertation of test
cases under control of the verification program. The vendor has
pre-verification offsite testing ability. After successfully testing
offsite, onsite compliance to the verification procedr .e should be
simpler. The risk of the vendor fraudulently L difying the
verification program to compensate for architectural inadequacies is
offset by the Air Force's keeping the load tapes for future reference
if necessary. The disadvantages associated with this test
configuration center around its limitations associated with manual
irtervention. If the verificaticn program requires several system
loads, then the memory loading procedure could become a critical
factor. If several loads could not be made from the same IPL tape,
several tape mounts are necessary. This data will be described
further in the analysis of subsequent proposed verification
apprcaches.

7-3

E176175A FINAL FEPCF' Fehruary 29, 1980

7.1.1.3 Costs

Air Force costs associated with the Manual Testing Ccnfiguration are
limited tc software development and naintenance costs and normal
certification personnel staffing hours as required hy the selected
verification program and testing procedure. Hardware ccsts to the Air
Force are non-existent since all hardware is supplied ky the vendor.

Vendor costs include hardware costs, software costs, and computer
operator cost. The hardware necessary for the manual test
configuration can be considered to be the standard equipment used for
ncrmal computer development with the exception of the hardcopy device.
Softuare cost would include the develcpsent of the o~tput subroutine
and the generatio of the load tapes. Personnel costs would simply
cover the vendor representative presence to mount the load tapes and
start the verification program running.

7-4

E176175A FINAL BEPCBI FEtruazy 29, 1980

7.1.2 asterLSlave Test Configuration

7.1.2.1 Description

Ite Master/Slave Test Configuration is the most ccplex hardware
configuration considered tc perform the verification to the
MIL-STD-1750 architecture. The test configuration requires both
vendor and Air Force supplied hardware and software. Ize hardware
associated with the Master/Slave Test Configuration is as follows:

ITEM SUPPLIEF

Master Computer with the Air Force
following:

- Hardcopy Device
- Auxiliary Storage
- Console/Terminal
- Ccmmunications link

- MIL-STD-1553
- RS-232

?IL-STD-1750 Computer Vendor

I/O Channel on MIL-STD-115O or Vendor
Channel Adapter
(i.e., 1553, RS232, etc.)

Ground Support Equipment with Vendor
- Main Storage Load Facility
- Main Storage and Register

Display/Modify Facility
- Program Start and Stop

on Compare Facility

The software necessary to carry out the certification under the
Master/Slave Test Configuraticn would he as fcllcws:

Verification Program for Air Force
MIL-SID-1750
Bootstrap Program on Air Force

MIL-STD-1750

Control Program on Master Air Force

I/O Interface Test Programs Air force

Utility Programs (Standard on Master
Comuter)

7-r,

176175A FINAL REPCPI Fetruary 29, 1980

Inrut/Output Subroutines Vendor

Ficure 7-2 depicts the fMaster/Slave Test Configuration. The
certification scenario wculd be as follows:

1. The Air Force gives a copy of the boctstrap program source
code and I/O Test Programs (both require vendor supplied i/O
subroutines) to the vendor and specifies 2/O subroutine
requirements.

2. The vendor develops subroutines to bandle I/C, and then
prepares a bcotstrap load tape by assemling bootstrap
program source and link editing it with the I/C subroutines.
An I/O Test Program load tape is similarly developed.

3. The vendor brings computer test equipment and load tapes to
SEAFAC.

4- Both the vendor and the Pir Force connect the taster

computer to the vendor's I/O channel.

C. The I/O Interface Test Prcgrams are loaded and run tc verify
the communication interface between the unit under test and
the Master computer.

E. Under SEAFAC observation the vendor loads tie bootstrap and
I/O programs and starts tcctstrap execution.

7. SEAFAC personnel start the control program on master
computer.

?. ~he verification proaram is transmitted to the vendor's
MIL-STD-1750 ccputer by the Master computer and control is
given to the verification prcaran. When the verification
program finds an error cr recuests more test cases, the
Master computer is notified over the communication link.
Test results are documented cr scue fcrm of hardcopy device
(typewriter terminal or printer) associated with the Master
computer system.

7.1.2.2 Analysis

TIe Master/Slave Test Configuration offers the greatest degree of
automation available for the Air Force to conduct the MIL-STD-1750
certification process. Furthermore, this approach makes certain
verificaticn approaches feasible (Randc, AVP, Lcckstep) that would
nct ave been feasible due to implementation restrictions discussed in
sulsecuent sections of this document. The Master/Slave 2est
Configuration also makes use of the available peripherals associated
%ith the Master computeL and facilitates excellent tracking capability

LM
-A"

6176175A FINAL PEPCF7 FEhrua y 29, 1980

Operator's
Control
Panel

A

Bootstrap MIL-STD-1750
Load Computer
Facility

Channel
Adapter

Auxiliary Master Printer
Storage Computer

, Terminal

Figure 7-2. Master/Slave 7est Configuration
(Sheet 1 of 1)

7-7

6176115A FINAL REPCUT Februarl 29, 1980

(Ex. spooling intermediate results to cars storage to Le printed at a
later time). The Master/Slave Test Configuration brincs into plai, as
well, the powerful computation power cf the Master and associated
support software.

The disadvantages associated with this test configuration are cost and
ccrplexity. The cost of the Master ccmputer is considerable under
most circumstances, but for purposes of this study, the cost of the
Master computer, its peripherals and the MIL-SID-1S 3 or RS-232
ccmmunicition link are to be considered as zero since they are
eiisting SEAFAC assets. From the vendor's rerspective, the impact of
the Master/Slave Test Configuration (besides the additional
input/output routines and I/O channel recuired) is the potential
limitaticn concerning pretest. Depending or the verification approach
selected to run under this test configuraticr., the vendcr will be able
tc utilize parts of the test code made available prior to in-house
testing by the Air Force at SEAFAC. In the area of ccmplexity, the
Master/Slave Test Configuration puts an additional cost burden on the
Air force for developing the bcotstrap trcgram for the MIL-S:D-1750
and contrcl program for the Master computer, as well as the I/O
Interface Test Programs.

7.1.2.3 Costs

Air Force's cost associated vith the Master/Slave Test Configuration
can be segmented .nto twc areas; (1) hardware costs and (2) software
costs. The iiardware costs to the Air Ycrce would include the cost of
the Master computer with related peripherals and comunications link
which have already been established tc be 2ero. The software costs
are compounded by the additional development costs of the hootstrac
Troaram for the unit under test and the control progran for the Master
ccmputer along with the normal cost of kriting (and maintaining) the
selected verification program. The I/O Interface test programs are
necessary to integrate the vendor and the Air Force hardware prior to
actual verificatic .

STAFAC personnel requirements tc mcnitcr the execution of the
verificaticn program uould be minimal since the approach is fully
automated. A technician familiar with the Air Force's I/C Interface
slculd he available to assist the vendor wIen the verdCr conrects to
that I/O Interface. Vendcr costs consists of the normal comuter and
Cround Support Equipment augmented by the I/O channel recuiremert.
Software provided by the vendor consist cf the I/O sutroutines and the
tcctstrar and I/O Test Prcgram load taces.

7-F

77 AD-A099 260 IBM FEDERAL SYSTEMS DIV OWEGO N Y F/S 9/2
MIL-STD-1750 CERTIFICATION STUDY . (U)

UCFEB 80 M L KUSH.NER, D C REISIBER. W J TRACZ F33657-79-M-0858

UNCLASSIFIED IOM-6176175A N2,3 Eh~hE

EhEMEOIOEli.

E176175A FINAL REPCET February 29, 1980

7.1.3 Autcmatic e "onfiqguration

7.1.3.1 Description

The Automatic Test Configuration provides a workable standalone
self-documenting system, with reasonable cost and performance to
ccnduct the certification of the MIL-STD-1750 architecture. This test
configuration places the same software and hardware requirements on
the vendor as described in the 3aster/Slave Test Configuration. The
hardware associated with the automatic test conficuration is as
fcllc' s:

ITEM SUPPLiER

Certification Peripherals Air Force
- Hardcopy Device Air Force
- Auxiliary Storage (Tape/Floppy Disk) Air Force
- I/O Adapter (MIL-STr-1553/RS-232) Air Force

MIL-STD-1750 Computer Vendor

I/O Channel or I/O Adapter on MIL-STE-1750 Vendor
(MIL-STD-1553/RS-232)

Ground Support Equipment Vendor
- Main Storage Load Facility
- Main Storage and Register

Display/Modify Facility
- Program Start and Stop on Compare Facility

71e software necessary to carry out the verification under the
Autcmatic Test Configuration would be as fellows:

7-9

AW6- -

E176175A FINAL PEPCRT February 29, 1980

Verification Program for MIL-SID-1750 Air force

Bootstrap Program on MIL-STD-1750 Air Force

Contrcl Program to Access Auxiliary Storage Air Force

I/O Interface Test Programs Air Force

Input/Output Subroutines Vendor

Utility Programs (Standard on
Development
Computer)

Figure 7-3 depicts the Automatic Test Configuration.

Operator's
Control
Panel

BosrpMI L-STD-1750

Load Computer

ChannelPrinterAuxliryAtdapter

Figure 7-3. Automatic Test Configuration

71Fe certification scenario would be as fcllovs:

1. The Air Force gives a copy of the boctstrap program source
code and 1/o Test Program (bcth require vendor supplied 1/O
subroutines) to the vendor and specifies I/O subroutine
requirements.

2. The vendor developes subroutines to handle I/O, and then
prepares a bootstrap load tape by assemtlinS the bootstrap
program source and link editing it vith I/O subroutines. An

7-10

E116175A FINAL SEPCET fehruary 29, 1980

I/O Test Program load tape is similarly developed.

3. The vendor brings his ccmputer, test equipmert and load tape
with the bootstrap program and I/O subroutines to SEkFAC.

4. Both the vendor and the Air Force connect SEAFAC's
certification peripherals to the vendor's I/C channel.

5. I/O Interface test programs are loaded and run to verify the
communication interface between the unit un er test and the
Air Force supplied peripherals.

6. Under SEAFAC observation, the vendor lcads the bootstrap and
I/O programs, and starts their execution.

7. The bootstrap program loads the verificaticn program from
the auxiliary storage and commences execution. Errors or
other messages will be logged out on the printer.
Subsequent program loads from auxiliary storage will be made
under program control. No manual interventicm is necessary.

7.1.3.2 Akalysis

The Automatic Test Configuration offers the simplest fully automated,
self-documenting system for the Air Force to conduct the MIL-STD-1750
certification process. This approach facilitates certain verification
approaches, but limits the potential dynamic nature of certain test
prccedures (Random) which will be explained in subsequent sections.
The main disadvantage of this approach is that it requires the Air
Force to purchase, integrate and maintain the selected peripheral
devices. Vendor requirements are the same as for the Master/Slave
Test Configuration, but the implications of pre-verification occurring
cffsite using the Air Force developed verification program becomes
acre feasible since the Automatic Test Configuration is easier for the
vendor to implement than the Master/Slave Test Configuration. The
Automatic Test Configuration might also be considered portable if the
Air force implemented it as such.

In summary the Automatic Test Configuration will give the Air Force
considerably less function than the Master/Slave Test Configuration,
at the same time costing more because of the purchase of additional
peripheral devices. The vendor requirements are the same and the Air
Force's software costs are the same as for the Master/Slave Test
Configuration, thus indicating that the Master/Slave Test
Configuration offers a superior type of approach.

7-11

AA_.

6176175A FINAL TEPCFT February 29, 1980

1.1.3.3 Costs

The cost to the Air Force tc iuplement the Automatic Test
Configuration to support the certification of the MIL-STD-1750
computer consists of the following items:

0 Purchase of Certification Peripherals (Auxiliary Storage and
Printer)

a Development of Interface

* Development of Verificaticn Prcgram

* Development of Bootstrap Program

a Development of the I/O Interface lest Programs

* Maintenance of all Software

Nendor costs would be the same as with the Master/Slave approach.
STAFAC personnel requirements, to monitor the execution of the
certification program, would be minimal since the approach is fully
automated. A dynamic approach could be selected requiring the
substitution of auxiliary storage to handle additional data
requirements (floppy disks or tapes), thus reducing the system to a
seri-automated state. The I/O Interface bring-up would require a
t-echnician familiar with the Air Force's I/C Interface to assist the
vendor.

7.1.4 Ccmparison

All three approaches described in the preceding sections provide the
Air Force with some form of certification facility. The Manual Test
Configuration offers the least amount of automaticn while the
Master/Slave Test Configuration has the most. The Manual Test
Ccnfiguration restricts the irplementaticn cf the verification program
to certain verificaticr approaches, while the Master/Slave Test
Corfiguration places no linitations on the verification approach
selected. The Manual Test Ccnfiguraticn prcvides corvenient offsite
pre-testing by the vendcr, while the Master/Slave Test Configuration
has some potential implementaticn dependent limitations.

!he Automatic Test Configuration costs more for the Air force to
irplement because of the additicnal hardware purchased, while
rrcviding less function than the Master/Slave Test Configuration. For
this reason, the Automatic Test Configuration will be dropped from
further consideration as a feasible test configuration. Subsequent
verification approach analysis will center around the :emaining tuo.
Table 7-1 summarizes the cost breakdcwrs and components associated
with each test configuration.

7-12

E176175& FINAL P.EPCET Fetruary 29, 1980

Table 7-1. Test Elerents

-- - - - - - - -- - - -- - - - - - -+- -

Master/Slave I Autczatic Manual

Ilendor Costs I I
I I I I
I Software 11/0 Subroutines 11/0 Subroutines IOutput Subroutinef
I ILoad Tape ILoad Tape ILcad Tape
I ISupport Software ISupport Software ISupport Software
I I I I
I Persornel jGSE Operator IGSE Operator JGE' Operator
II II
I Hardware 11750 Computer 11750 Computer I"l'50 Computer
I ISpecial I/O ISpecial I/0 INcre
I I Interface Interface

IMaster Computer [Peripherals IPrinter
I (For Verifica- I (For Verifica- I
I tion Pre-Test) I ticn rre-Test)l

+-- ---

7-13

- . - - - - "." L - ,. . .. } i . ' I~ ~h _"

61161751 FINAL FEPCF7 February 29, 1980

Table 7-1. Test Elements (cont)

--------------------- -- m-------m-----------------------------------
M Laster/Slave I Autcmatic M ?anual

I ir force Costsj

Software ;Verification lVerification [VerificationI
I Program I Program I Program
I I I
IBootstrap Source I ootstrap Source Icne I
IControl Program lUtility Program -lUtility Program -I

I I loffload Test Codel Offload Sourcel
ISupport Software ISupport Software. SuFport Software
11/0 Test 1I/0 Test lI/C Test

I Rardware lInterface Interface jlcne

SMaster Computer/ IPeripherals Ilcne
I Peripherals I I

I Personnel IDeveloFment IDevelopment jDevelofment
I Programmers I Programmers I Programmers

I I I I
I1aintenance IMaintenance I aintenance

I Programmers I Prcgrammers I Programmers
I I I I

ITest Operator/ ITest Cperator/ ITest Operator/
Observer I Observer I Cbserver

lIntegration lIntegration INcne
I Technician I Technician I

I I I II
I Other ITest Procedure [Test Procedure ITest Procedure I

II I II
IUtilize Master IGenerate lest IWc¢e I
I Computer for I Tape I I
I Test I I I

7-14

E176175A PIAL FEPCF1 Peruary 29, 1980

7.2 TEST APPROACHES

In this section, the test approaches remaining after applying the
pass/fail criteria will be discussed under two test configurations,
Manual and Master/Slave. Each approach will be analyzed and described
in perspective with "being itplemented" as a verification program for
the NIL-STD-1750. Variations of certain approaches will also be
covered. The proposed approaches discussed in the following sections
are:

* AN/AYK-15A Acceptance Test Program

* Random Instructions

" Architectural Verificaticn Program (AVP) - System 360/370

* Diagnostic

* Functional Test Program (FTP)

- with existing FTP available

- with no FTP available

* Lockstep

- with Trace feature

- without Trace feature

- with Simulator instead of "golden" computer

- with predetermined results

In order to facilitate the comparison cf ccmparable quantities, the
fcllowing assumptions are made concerning each projected apiroach.

1. Each (non-Random) verificaticn prcgram has on the average 25
test cases per instruction resulting in appzcximately 5,000
separate test cases being generated for an architecture of
the MIL-STD-1750 class.

2. A programmer productivity of 2 test cases per day is
assumed. The Air Force's suggested rate fcr Operational
Flight Program development is 110 lines cf High Order
Language instruction statements per month, atd 75 lines of
machine language instruction statements per mcnth. They are
modified for calculating the development cost of
verification programs based cn the following reasons:

a. Verification programs are greatly simpler in complexity
and organization than operational flight programs.

7-15

....

E 76175h FINAL REPCP7 February 29, 1980

b. Verification programs are easily mcdularized into
different program segments.

c. There is a minimal amount of inter-module communication
in verification programs.

d. Each module in a verification program contains only
very simple program logic.

e. Each module's function is extremely repetitive in
nature (i.e., load data values, perform operation, and
check result with the expected result).

f. The main storage area (reserved for constants and
expected results) comprises 30 to 50 percent of each
test module.

Therefore, a programmer productivity rate of 200 lines of
High Order Language instructicn statements per month, 180
lines of machine language instruction statements for control
program code, and 280 lines of machine language instruction
statements for test program code per month are used in
calculating the development cost for the verification
programs.

3. Software maintenance costs are projected assuming that two
errors are found per a thousand lines of delivered code and
that each error takes 1 man week to correct. Software
maintenance costs are based cn a ten year life of the
verification program.

4. Total recurring costs are based cr a ten year life of the
program and 30 computers being certified.

5. The MIL-STD-1750 computer has a 32K, 16-bit words of main
storage.

6. The VAX 11/780 computer system, the KII-STD-1553 I/O
channel, and the RS-232 I/O channel are available to support
the Master/Slave approach at 2erc cost.

7. lhe time required to perform validation does nct include the
time allocated to cabling up the computer ard verifying the
I/O interface. It is assumed that a 8-hour time slice would
be more than adequate to support this activity.

8. For calculation purposes, the unit under test computer is
assumed to be a 500 KOP machine, and the Master computer is
capable of executing one million instructions per second and
prints at a 300 line per minute rate.

S. A cost figure of $70K per man year is used in developing
dollar cost totals.

7-16

E176175A FINAL PEPCEI Fetruary 29, 1980

NCE: contrary to intuition, the type of program known as a
"Control Program" varies hcth in size and fuaction
throughout the 12 approaches analyzed. Therefore, cost
figures for each approach will reflect this variance between
control programs. Similarly, the overhead processing per
test case for each approach varies frcm 50 instructions for
AN/AYK-15A, Diagnostic and FTP, to 1,000 for Lockstep,
10,000 for AVP and 15,000 for Random. These numbers were
developed from the data gathered during the first phase of
the study and represent the type of processing required in
the test case initialization and execution fcllowed by the
verification of results. The first three approaches invoke
in-line tests, thus taking little overhead. The remaining
approaches require operating system overhead, or control
card processing (AVP), or simulation and incur a large
amount of additional processing.

I

7-17

! *

6El"/6175A FINAL FEPCFI Fetruary 29, 1980

7.2.1 A ./.A .K-15A ATP in a Manual Test CSturaicn

7.2.1.1 Description

A verification program developed from the 1A/AYK-11 A7P, targeted for
a Manual Test Configuration, would yield a satisfactcry and thorough
static test of the MIL-STD-1750 instruction set. Using the existing
AN/AYK-15A ATP as a starting point, the following modifications must
he made. Each test module must be analyzed for content with
irrelevant test cases excluded and relevant test cases added to
ircrease coverage. The supervisor program must also he modified to
communicate with the newly defined I/O interface asscciated with the
manual test configuration. The estivated size of the finished
verification program is S6K, requiring three prograt lcads.

7.2.1.2 Non-Recurring Start-Up Costs

The cost of implementing a verification Frcgram based cn modifying the
AE/AIK-15A ATP under a Manual Test Configuration would consist of the
fcllcwing software development components.

Mcdification of AN/AYK-15A ATP 3.1 man years
(Modify 30% of 30K EAL* = 9K)
(Write 1K BAL Control Program)

L Source Tape Generator Program 0.3 man years

(500 BAL)

lest Plan Document - 0.3 man years

TOTAl 3.7 man years

. ------------------------------------- +

I*BAL means Basic Asserbler languagel
or, equivalently, I

Machine Language Instructions I
HOL means High Order language I

INote that where HOL and PAL figuresl
jappear on the same line, this meansl
jthat portions of the prcgran will I
Tbe written in each language. I
+ -------------------------------------

7-18

E176175A FINAL EBPCFI Fetruary 29, 1980

j.2.1.3 Recurring Costs

The recurring costs associated with a verificaticn approach based on
tie rodification of the AN/AYK-15A AIP under a Manual Test
Configuration consist of two major components - verification cost, and
the cost to sustain the software. The recurring costs reflects the
cost per ccmputer tested, assuming 30 ccmputers tested over a 10 year
period. The verification costs are prcpcrticnal to the staffing
allocated during each vendor verification and the actual time it takes
tc ccmplete each verificaticn procedure. The cost tc sustain the
scftware based on the number of source lines of code (not program
size) are calculated in the fcllcwing table. An additional cost,
although ncminal in nature, is the cost of generating the verification
program source tape for the vendor to make IPL tapes from. This cost
is considered part of the verificaticn ccst. Table 7-2 contains a
summary cf recurring costs.

7.2.1.Et Time Required tc Perform Validation

Ile time required to perform validation using a verification program
lased on the modification of the AN/AYK-15A ATP under a Manual Test
Configuration consists of the summaticn of mount times, memory load
times and execution times. Assuming 5 minutes to mount the tape, 3
minutes to load memory and 8 minutes to process the test modules on
each load tape and print cut the results, the maximum time to run the
verification test error free would be calculated as follows:

Verification time = N, * 5 minutes to mcunt each tape +

N2 * 3 minutes to load and go +

N2 * 2 minutes to execute the program and
print out results

where:

N = number of tape mounts = 3 wcrst case

N2 = number of program icads = 3

Verification time = 3 * 5 + 3 * 3 + 3 * 8

= 48 minutes

7-19

E176115A FINAL REPCRP Fekruary 29, 1980

1.2 1.5 Impact to SEAFAC Resources

111e implementation of a verification approach tased on the
uodification of the AN/AYK-15A ATP under a Manual Test Configuration
wculd require the use of MIL-STD-1750 support software (cross
assembler, linking loader, and simulator) on the develcpment computer
system. SEAFAC personnel would develop and maintain tle certification
ytogram as well as prepare the scurce tape to give tc each vendor.
During the verification process, there would be no impact on the
development computer, but SEAFAC perscnnel wculd be required to assist
in tle integration, initiation, and observation of te verification
prcgram executing on the unit under test.

Tle cost data impact to SEAFAC (and the previously discussed cost
data) is summarized in Table 7-2.

7-20

-. 7w

E176175A FINAL BEPCP'! Feruary 29, 1980

Table 7-2. Cost Summary for the AN/AYK-15A A7P Approach Under A
Manual Test Configuration

4---

II Cost
I------------

I I Man I
I Item jYearsl K $ I

Ncn-Pecurring Start-Up Costs I
I

Hardware i
- Development Ccmputer 1 0 1 0 1

Software |
- MIL-STD-1750 Support Software I 0 0 1

(Cross Assembler, Linking lcader, Simulator) I
- Modification of AN/AYK-15A ATP 13.1 1217 1
- Source Tape Generation Program 10.3 1 21 1

Other I
- est Plan Document 10.3 I 21 1

TOTAL 13.7 1259 I

Recurring Costs/Computer

Hardware
- Maintenance 0

Software
- Maintenance 10.0521 3.7 1

4OK * 2 errors/K * $1,400/30

I Personnel
- Coverage to Observe Execution and Analyze I0.04 1 2.8 1

Results (2 People for 1 Week) i

Otter 1
- Test Plan to Vendor with Verification Source 10.0041 0.281

TOTAL 10.0961 6.781
4--- ------ ------- +

I
I 7-21

E116175A FInaL SEPCFE Tetruary 29, 1980

7.2.2 AW/AYK-15A ATP in a MasterZS1a_ve j_ Cfgujatic

7.2.2.1 Description

A verification program based on modifying the AN/AYK-1A ATP, targeted
for a Master/Slave Test Configuration wouid result in a verification
iccess closely resembling one based on the FTP or Diagnostic

approach. The AN/AYK-15A test modules would be analyzed for content
with the irrelevant test cases deleted and additional test cases added
tc increase coverage. The supervisor prcgram would be modified to
comunicate with the control program on the Master tc facilitate the
Icading of test modules into the unit under test and the passing of
test results back to the Master for recording. The control program on
the Master would handle all I/O and would be initially invoked by a
bootstrap program loaded on the unit under test (slave) by the vendor
at the start of the verification process. The apprcximate size of
each of the software modules follows:

Supervisor 8K words

Test Modules 88K words

Contrcl Program 8K words

Bootstrap Program 1K words

7.2.2.2 Non-Recurring Start-Up Costs

Ihe cost of implementing a verification Frcgram based cn modifying the
AN/AYK-15A ATP under a Master/Slave Test Configuration would consist
of the following software develcopment ccpcnents:

7-22

E176175A FINAL SEPCU Fetruary 29, 1980

Modification of AN/AYK-15A ATP 3.1 man years
(Modily 30% of 30K EAL = 9K)
(Write 1K BAL Supervisor
Program)

Control Program (Master) 1.1 man year
(2K HOL; 500 BAL)

Eootstrap Program 0.3 man years
(400 BAL)

Source Tape Generatcr Program 0.3 man years

(500 EAL)

I/O Test Programs (1K BAL) - 0.5 man years

Test Plan Document - 0.3 man years

TOTAL 5.6 man years

7.2.2.3 Recurring Costs

Ile recurring costs associated with modifying the AN/AYK-15A ATP to
run under a Master/Slave Test Configuration consists of the usage of
the Master computer (zero cost) and the staffing for the integration,
initiaticn and observation of the verification process, plus the
analysis of the results. The second majcr ccst is the cost to sustain
all softvare. Table 7-3 contains a summary of recurring costs.

7.2.2.4 Time Required to Perform Validation

Ile time required to perform the complete verificaticn process is

calculated as fcllows:

Verification time = Bootstrap Load and Go (5 minutes) +

Master Computer Ccntrol Prcgram +
Initialization (5 minutes)

Verificaticn Program Execution
Time (1 minute) +

I/0 Transfer Time (3 seconds)

= 11 minutes.

7-23

6176175A FIWAL REPORT February 29, 1980

Table 7-3. Cost Summary for the AR/AYK-15A ATP Approach Under A
Baster/Slave Test Ccnfiguration

4---

I Cost
I I-------------

I an I
Item IYearsJ K $ 1

¢cn-Pecurring Start-Up Costs I

Hardware |
- Development/Master Computer 0 0
- MIL-SID-1553 and RS-232 1/0 Interfaces 1 0 I 0

Software I
- HIL-STD-1750 Support Software (Cross Assembler, 0 I 0

Linking Loader, Simulator) I
- Bootstrap Load Program 10.3 1 21 1
- Source Tape Generation Program 10.3 I 21 1
- Control Program on Master 11.1 1 77 1
- Modification of AN/AYK-15A 13.1 1217 1

Other 10.5 1 35 1
- Test Plan Document 10.3 1 21

I Ii- I--

TOTAL 15.6 1392 1

Recurring Costs/Computer

Hardware
- aintenance 0 1

Software I
- aintenance 10.0591 4.141

44.4K * 2 errors/K * $1,400/30

Personnel
- Coverage to Initialize, Cbserve and Analyze 10.04 1 2.8 1

Results (2 People for 1 Reek) I I I
- Technician to Supervise Integraticr of I/O 10.0041 0.281

Interface

Otter
- Test Plan to Vendor with Verification Source 10.0041 0.281

I ------ I -- I
TOTAL 10.1071 7.5 1

7-24

E176175A FINAL BEPCEI Fetruary 29, 1980

7.2.2.! impact to SEAFAC Rescurces

The implementation of a verificaticn program by modifying the existing
AN/AYK-15A ATP to run under a Master/Slave Test Configuration would
utilize the support software (MIL-STD-1 70 cross assemblers, linking
icader, and simulator) as well as normal system utilities on the
Master computer during system development. During the verification
prccess, the Master computer would play a passive role serving as an
I/O contrcller for the verification program. SEAFAC personnel would
he reaouired to develop and sustain the verificaticn jrcgram, as well
as the bootstrap and control prcgrams. During testing, SEAFAC
personnel must also supervise the integration and initialization of
tte verification process.

The cost data impact to SEAFAC (and the previously discussed cost
data) is summarized in Table 7-3.

7.2.3 Random Instruction in a Manual Test Ccnfiguratict

7.2.3.1 Description

A verification program developed using a Fandcm Instruction design
philcsophy targeted for a Manual Test Ccnfiguration wculd result in a
verification process with certain severe limitations given the current
memory constraints of the computer. The Random tests approach in a
standalone mode consist cf a random instruction sequence generator, a
stpervisor program and a high fidelity/quality "golden" simulator.
The random instruction sequence generator generates a sequence of
instructions that are executed by the hardware and simulated by the
simulator The supervisor program then ccmpares the generated and
simulated results and prints out the results.

The approximate size of each software component is:

Ccntrol Program 4K words

Random Instruction Generator = 24K words

"Golden" Simulator - 300K words

Given the 32K memory size specificaticn for all units under test, a
dynamic random instruction verificaticr prcgram under a Manual Test
Ccnfiguration would not be possible to implement. An alternative is a
static approach. Random sequence of instructions are generated
offline and saved. These instruction sequences are then simulated and
their results saved. Load tapes consisting of a supervisor program,
sets of random instruction sequences and test results are generated.

7-25

E176175A FINAL FEPC1 Petruary 29, 1980

Ite load tapes are executed on the unit under test. The supervisor
piogram sequentially executes the randc instruction test sets,
ccrparing generated values to expected values and printing the
results. The number cf random instruction sequences executed is
limited by the time allocated for the validation process, and the time
it takes to load and execute the test cases.

it the supervisor program takes 8K words, that leaves 24K words for
test cases, expected results, and generated results. Each test set is
(on the average) 40 words long, the expected results for each test set
is 60 words; each test set effectively contains 10 executable test
cases. In the 24K of data space, 240 test sets could be allocated.
'Uerefore to facilitate the execution of 125,000 test sets with a
total of 1,250,000 test cases being executed, 521 separate memory
loads would have to be made. Furtheimore, the Air Force would have to
sufply the vendor with 12.75 megawords torth of data to generate the
load tapes. ((521 loads * 24K words) + eK.)

It has previously been stated that when the Randon Instruction method
has teen applied to verify the architecture of a computer which is
capablf of execating four million instructions per second, that most,
if not all, of the architectural discrepancies are discovered after
cnre hour of processing. In order to ottain the necessary coverage,
confidence, and completeness, this interprets to tie execution of
125,000 sets of random instruction sequences with each having an
average length of 10 executed instructions (although the sequences are
22 instructions in length, the percentage distribution of branch
irstructions randomly appearing brings the average number of
irstructions executed per test set seouerce tc 10). Therefore,
1,250,000 random instructions are tested per hour (on the four million
irstructions per second computer), with each instruction in itself
IEing a test case. The term "test cas e", therefore, when used in
conjunction with the random instruction approach, refers to a single
irstruction which is generated, and verified.

NOTE: The execution of 1,250,000 randomly generated
instruction test cases has teen judged a priori to be
comparable from a quality viewpoint to the 5,000
manually generated test cases used in other approaches.

1.2.3.2 Non-Recurring Start-Up Costs

The cost for implementing a verificatior yrogram based on the Random
Instruction approach under a manual test configuration would consist
of the fcllowing software development costs:

7-26

6176175A FINAL BEPCB' Fekruary 29, 1980

Random Instruction Generator 3.0 man years
(6K HOL; 1K BAL)

Eimulator = 6.0 man years
(12K HOL; 2K BAL)

Supervisor Program - 1.8 man years
(4K BAL)

Tape Generator Program = 0.3 man years
(500 BAL)

Test Plan Document - 0.3 man years

TCTAI 11.4 man years

7.2.3.3 Recurring Costs

lle recurring costs associated with the Random Instruction approach
imrlemented under a Manual Test Configuration consists of three
significant components. First, the cost cf generating 1,250,000 test
cases and results on the development system and creating the test case
scurce tapes for the vendor, pricr to in-house testing. Second is the
personnel requirements necessary to observe the manual test procedure
taking place. The time required for generating the 1,250,000 test
cases and results based on 15,000 instructions being executed to
cenerate the data necessary for each test case on a computer (capable
of executing one million instructions per second) is:

1 sec
1!,000 * 1,250,000 instructions e --------- instructicns = 18,750 sec

1, 0 C0, 000

Tlerefore it would take 5 hours, 12 minutes of CPU time to generate
tle data to be put on a single tape plus the I/C transfer time for
12.75 megavords. The cost of sustaining the certification program is
the third component of recurring ccsts.

7.2.3.4 Time Required to Perform lalidaticn

Using the formula developed previously, the verification time to load,
ezecute and print out the results of 1,250,000 randomly generated test
cases would be as follows:

i 7-27

61761751 FINAL REPCF' Fetruary 29, 1980

Verification time = *, * 5 minutes to mount each tape +

N2 * 3 minutes to Icad and go +

N2 * 2 minutes to execute the program and
print out results

where:

N, = number of tape mounts = 521 worst case

N2 = number of program loads = 521

lerification time = 521 * 5 + 521 * 3 + 521 * 2

= 5210 min = 86.8 hours = 11 days (8 hours/day)

7.2.3.5 Impact to SEAFAC Resources

Using a Manual Test Configuration under which to implement a Random
Instruction test approach places a significant burden on SEAFAC
personnel to be present during the 11 days of testing. Other
requirements would be the normal support scftware (cross assembler,
linking loader and simulaticn) ; Flus the development cf the random
instruction generation program. As previously mentioned, the
generaticn of the random instructions, though ccmpletely automated
requires a significant amount of CpU time on the develcpaent computer.

Ile cost data impact tc SEAFAC (and the previously discussed cost
data) is summarized in Table 7-4.

7-28

6176175A FINAL BEPCRH February 29, 1980

Table 7-4. Cost Summary for the Fandcm Instruction Approach Under A
,anual Test Ccnfiguration

4.--------------------- -------------- +

I Cost
I I--------------

IMan I
Item jYears I KS I

Non-Recurring Start-Up Costs

Hardware
- Development Ccmputer 1 0 0 1

Software
- ILIL-STD-1750 Support Software (Cross Assembler,I 0 1 0 1

Linking Loader, Simulator) I I
- "Golden" Simulator 1 6.0 1420 1
- Random Instruction Generation Program 1 3.0 1210 I
- Source Tape Generatcr Prcgram 1 0.3 1121 1
- Supervisor Program 1 1.8 1126 1

Ot.er
- Test Plan Document 0.3 1 21 1

TOTAL 111.4 17S9 I

Recurring Costs/Computer

Hardware
- aintenance 0 0 0

Software I
- aintenance 1 0.0341 2.381

25.5K * 2 errors/K $ $1,400/30 I I

Personnel I I I
- Coverage to Observe Execution and Analyze 1 0.04 1 2.8

Results (1 Person for 2 Weeks)

Other
- Test Plan to Vendor with Verification Source 1 0.0041 0.281

TOTAL 1 0.0781 5.461

7-29

- ~ C '

E176175A FINKL PEPCF7 Yekruary 29, 1980

7.2.4 Random instruction in a Master/Slave 7est ConfiSration

1.2.4.1 Description

Ihe Random Instruction design approach is ideally suited to the
Master/Slave Test Configuration for implementing tke MIL-STD-1750
verification program. Under this approach, the random instruction
c enerator and "golden" simulator would reside on the Master computer.
lie unit under test (slave) would contain supervisor programs whose
functions are to request test cases, execute them, and send back the
results to a control program running in the Master computer. The
control program supervises the generaticn, simulation and comparison
functions on the Master computer and lcgs the results. The Air Force
uculd send the vendor a copy of t.e bootstrap program, and the vendor
wculd bring it in IPL format along with the I/O routines at the time
of certification. The size of each program module is described in the
previous section.

7.2.4.2 fion-ecurring Start-Up Costs

Ile costs of implementing a verificatior program based on the Random
Instruction approach under a Master/Slave Test Ccnfiguration would
consist of the following software development costs:

Random Instruction Generator (Master) = 3.0 man years
(6K HOL; 1K BAL)

"Golden" Simulator (Master) = 6.0 man years
(12K HOL; 1K BAL)

Ccntrcl Program (Master) = 1.8 man years
(3K HOL; 1K BAL)

Supervisor Program (Slave) 1.1 man years
(3K BAL)

Bootstrap Program 0.2 man years
(400 EAL)

Source Tape Generator Program = 0.3 man years
(500 BAL)

I/O Test Programs (1K BAL) - 0.- man years

Test Plan Document 0._ man years

ICIA.L 13.E man years

7-30

E176175f FINAL FEPCE1 iekruary 29, 1980

7.2.4.3 Recurring Costs

The recurring costs associated with the Random Instruction approach
under the Master/Slave Test Configuration consist of ccputer usage on
the Master computer (zero costs) and staffing for whatever portion of
tie test is required, especially the analysis of the results. This
cost is augmented by system integration ard initiation costs. The
final cost component is the cost of sustaining the software.

7.2.4.4 Time Required tc Perform Validation

11e time required to perform the ccmrlete verificaticn test consists
of the summation of Bootstrap Load and Go time, Master Computer
Control Program Initiation time, Test Case Generation and Execution
tize, and I/O Transfer time. An estimate of these times follows:

Test Case Generation, Simulaticn and Verification
Master

15,000 instructions per test case overhead to generate,
simulate, and verify results

1,250,000 test cases *
1 sec/1,000, 000 instructions (speed of master)

Total time of Generation/Verification = 18,750 seccnds - 313 min

Test Case Execution cn Slave
1,000 instructions per test case overhead

1,250,000 test cases *
I sec/500,000 instructions (speed of slave)
= 2,500 sec 42 min

Data Transfer
125,000 test set * 40 words cf instructicns per

test set +
125,000 test set * 60 words of results per

test set
- 12.5 megawords / 30K words/sec = 417 seconds 7 min

S

7-21

-J

(116175A FINAL FEPCF7 feLruary 29, 1980

Verification time = Bootstrap toad and Go (5 minutes) +

Master Computer Ccntrcl Prcgram

Initialization (5 minutes) +

Test Case Generation Time (313 minutes) +

Test Case Executior Time (42 minutes) +

I/O lransfer Time (7 minutes)

- 6 hours, 12 minutes.

NOTE: The major component in the verificaticn time is the
time to generate, simulate and verify the random
instructicns. This compcnent is in turn proportional
to the overhead (15,000 instructions) taken to perform
this task. This figure assumes a 10,000 to 1
performance ratio on the simulator, which is a figure
characteristic of simulators developed in a high order
language. The total verification time is a worst case
analysis and makes no assumptions regarding potential
speed up if overlapped prccessing is implemented.
Total time is imprcved orly two percent if a parallel
I/O channel is used instead of MIL-S l-1553 channel,
and would be degrated by 17 percent if a PS-232 channel
is used.

1.2.4.5 Impact to SEAFAC Resources

A verification program based on the Pandom Instruction design
philosophy targeted for Master/Slave Test Configuraticn would utilize
tle Master computer both during the develcpment phase and during the
verification procedure. SEAFAC personnel would be recuired to write
all software modules for the Master and Slave.. This wculd include the
vse of such normal support software available on the Master (compiler,
editor, linking loader) as well as rII-STD-1750 support software,
(cross assembler, linking loader, and simulator). During the actual
verificaticn process, a certain porticn of the Master computer's
computational power must be dedicated tc the generation, simulation,
verification and documentation of the test cases.

Tle cost data impact to SEAFAC (and the previously discussed cost
eata) is summarized in Table 7-5.

7-2

E 176175A FINAL FEPCF7 Fetruary 29, 1980

Table 7-5. Cost Summary for the Randcm Instruction AFFroach Under A
Master/Slave Test Ccnfiguraticn

* ---

SI Cost

IMan I

Item JYears I K S

Non-Recurring Start-Up Costs I I

Hardware
- Development/Master Computer 1 0 0
- MIL-STD-1553 and RS-232 I/O Interfaces 0 0

Software
- MIL-STD-1750 Support Software (Cross Assembler,j 0 0

Linking Loader, Simulator)
- Bootstrap Load Program 0.3 21
- Source Tape Generation Program 0.3 21
- Control Program on Master 1 1.8 1126 I
- "Golden" Simulator 6.0 1420
- Supervisor Program on Slave I 1.4 1 98
- Random Instruction Generation Frcgram 1 3.0 1210 1
- I/O Test Programs 0.5 35 1

Other
- Test Plan Docusent 0.3 21 1

TOTAL 113.6 1952 1

Recurring Costs/Computer

Hardware
- Maintenance 0 1 0

Software I
- Maintenance 0.0391 2.7

28.9K * 2 errors/K * $1,400/30

Perscnnel
- Coverage to Initialize, Cbserve and Analyze 0.04 2.8

Results (2 People for 1 Week)
- Technician to Supervise Integration of I/O 1 0.0041 0.281

Interface

Other
- Test Plan to Vendor with Verification Source 1 0.0041 0.281

I -------I ---- I
TOTAL 1 0.0871 6.061

--

7-33

E116175A FINAL PEPCPI February 29, 1980

7.2.5 AVP In A Manual Test Configuration

/.2.5.1 Description

A verification program developed using an AVP design philosophy
targeted for a Manual Test Configuraticn %ould force mcdularization in
the following manner. The verification rrcgram will ccnsist of an 8K
supervisor program and a 24K data buffer. The supervisor program's
rcle is to process test cases resident in the data buffer, calling the
vendor's print routine to output results as they are generated. Test
cases will be made up of four types of statements (80 character
records):

a. ID statement - classifying the type cf test.

b. Set up statements - specifying the initialization
values.

c. Execute statement - specifying the instruction sequence
to be executed.

d. Result statements - specifying the expected values to
be compared to the generated results.

Test cases will average about 10 statements in length occupying 400
%crds of memory. A library system resident on the development system
would be used to handle the test case data base. The library system
allows idit and file capabilities. The 24K test case data buffer
%culd then be large enough tc contain an average of El test cases.
Tlerefore, there would have to be C2 distinct program loads under the
manual test configuraticn to process the 5000 expected tezt cases
cenerated. The test cases would occupy 2 millicn words of auxiliary
storace. It should be ncted that the large amount of stcrage required
fcr this approach is due to the overhead involved ir. having
EC-character control cards of which cnly ten to twenty percent
ccntains meaningful information. This implies that cretair.
inlementation strategies could compress unused blanks, although tfor
this analysis) a tradeoff like this will nct be considered.

lte venicr would be responsible for the generation of thE load tapEs
necessary to handle 82 loads. The Air Force would be resionsible tcr
sending the 2 megawords of data to the vendor.

1.2.5.2 Ncn-Recurring Start-Up Costs

The cost for implementing a verificatic program based cr the AVP test

aproach would be strictly software development costs. The cost

7-34

6176175A FINAL REPCR! FEtruary 29, 1980

hreakdown is as follows:

lest Case Develorment

25 test cases per instruction * 200 instructions = !,000 test cases
2 test cases per day productivity = 2,500 days

2!0 days/man year - 10 man years

Supervisor Program Develcpment = 1.3 man years

(3K dachine Language Instructions)

lirary System on Develc~ment Computer N t.C.

.ape Generation Program on 0 0.3 man years
Development Computer
(500 Machine Language Instructions)

lest Plan Document = 0.3 man years

TCTAL 11.9 man years

7.2.5.3 Recurring Costs

The recurring costs associated with the AVE approach under the Manual
lest Configuration are proporticnal to the staffing allocated during
tle vendor certification process, and the time it takes to complete
the certification. A second cost, though nominal in nature is the
ccst of generating the test case tape for the vendor prior to starting
tle in-house test procedure. The final recurring cost component is
tle cost to sustain the software.

7.2.5.4 'ime Required to Perform Validation

Ile time required to perform the entire certification consists of the
uEsmaticn of mount times, memory load times, and execution times.

Assuming 5 minutes to mount the tare, 3 minutes to load memory and 2
minutes to process the 61 tests cases in each program load and print
out the results. The maximum time to run the certification tests
error free would be calculated as fcllcws:

7-35

E176175A FINAL REPCP February 29, 1980

Verification time = N, * 5 minutes to mcunt each tape +

N2 * 3 minutes to load and go 4

N2 * 3 minutes to execute the program and
print cut results

where:

N& = number of tape vounts = 82 worst case

N2 = number of progran loads = 82

Verification time = 82 * 5 + 82 3 3 + E2 * 3

= 902 minutes = 15 hours, 2 minutes

7.2.5.5 Impact to SEAFAC Resources

lhe implementation of the AVP approact under a Manual Test
configuration would require the use of a development computer with
library system, and related MIL-STD-1750 support software (cross
assembler and simulator). The development computer would also be
necessary to generate the source tapes to give to the vendor. There
wculd be no impact to the development computer during the in-house
certification process. SEAFAC personnel would be required to develop
and maintain the test cases as well as the supervisor prcgram.

Ste cost data impact to SEAFAC (and the previously discussed cost
data) is summarized in Table 7-6.

7-36

E176175A FINAL PEPCPF Fetruary 29, 1980

Table 7-6. Cost Summary for the AVP Apprcach Under A Manual Test
Configuraticn

+---

I Cost

iMan I

Item |Years KS I

Non-Recurring Start-Up Costs

Hardware
- Development Ccmputer G 0

Software
- MIL-STD-1750 Support Software (Cross Assembler,j 0 0

Linking Loader, Simulator) I
- Test Cases 110.0 1700
- Supervisor Program 1 1.3 91 1
- Library System on Development Computer 1 0 0
- Source Tape Generation Program 0.3 21

Ctler
- est Plan Document 0.3 1 21

TOTAL 111.9 1833 1

Pecurring Costs/Computer

Hardware
- Maintenance 0 1 0 1

Software I I
- Maintenance 1 0.1361 9.5 1

Supervisor Program: 3K * 2 errors/K * $1,400/301 1
Test Cases: 2,000K * 0.1 errcrs/K * $1,400/301 I

Personnel I I
- Coverage to Observe Execution and Analyze 1 0.4 1 2.8

Results

Otber
- est Plan to Vendor with Verification Source 1 0.0041 0.231

SI-----I ----I
TOTAL I 0.18 1 12.581

--

7-37

E176175A FIV&L BEPCE Fetruary 29, 1980

7.2.6 AVP in a aster/Slave Test Confj_ration

7.2.6.1 Description

A verification program developed using an AVP design philosophy
targeted for a Master/Slave Test Configuration would result in a
ccpletely automated verification approach. The verification program
would be segmented into an 6K Supervisor Program with a 24K test case
data buffer. A bootstrap program would communicate with a control
program on the Master computer to first load the Supervisor program
into the unit under test (Slave). Ste supervisor would then
automatically roll in test cases and output results as the test cases
were executed. Test case size and laycut would be the same as in the
Manual Test Con'figuration and are descrited previously.

The library system on the Master computer would be used to develop the
test cases and handle their selection for zrocessing by the control
program running during the certificaticm process. The amount of data
tc be transferred between Master aid Slave is as follows:

lest Cases 2,000K words
Supervisor 8F
Results 5K

TOTAL 2,013K words

Tle Air Torce would send the vendor a ccpy cf the boctstrap program,
and the vendor would bring it in IFI format at the time of
certification.

7.2.6.2 Non-Recurring Start-Up Costs

She costs for implementing a verificaticr program based on the AVP
test approach and an automatic test configuration would be strictly
software development costs. The cost breakdown parallels the manual
test configuration as fcllows:

7-38

• .7

E116175A FINAL FEPCPT Fekruary 29, 1980

Test Case Development

5,000 test cases at 2 tests cases per day = 10.0 man years

Control Program Development (Master) = 1.3 man years
(2K HOL Instructions;
500 Machine Language Instructions)

Bootstrap Program Development (Slave) - 0.3 man years
(400 Machine Language Instructicns)

Supervisor Program reveloFment (Slave) 1.1 man years

(3K Machine Language Instructicns)

Library System on Master Computer N.C.

Source Tape Generation Program - C.3 man years
(500 Machine Language Instructicns)

I/C Test Programs (1K BAL) = C.5 man years

Test Plan Document - 0.3 man years

TOAL 13.8 man years

7.2.E.3 Recurring Costs

The recurring costs associated with the AVP apprcach under the
Master/Slave Test Configuration are associated with system integration
and initialization. These costs should not be greater than 1 man day
tctal. The other major costs would be attributed to staffing during
tte vendor certificaticn process and the cost of sustaining the
verification software. A minimal cost due to generating the source
tape for delivery to each vendor is also incurred.

1.2.6.4 Time Required to Perform Validation

Ile time required to perform the ccmplete merificaticn test consists
of tte summation of Bootstrap Load and GO time, Master Computer
Ccntrol Program Initiation time, Test Case Execution time and I/O
'Transfer time. An estimate of these times are as fcllcws:

7-39

E176175A FINAL FEPCFI feruary 29, 1980

lest Case Execution lime

5,000 test cases * 10,000
instructions/test case
overhead = 5,000,000 instructions

5,000,000 instructions/500,000
instructions/sec = 10 seconds

I/O Transfer Time

2013K words / 30K words/sec (over ?II-S'l-1553) = E7 seconds

Verification Time = Bootstrap Load and Go (5 minutes) +

Master Computer Ccntrol Progras Initialization
(5 winutes) +

'lest Case Execution Time (10 seconds) +

Print Results (90 seconds) +

I/O Transfer Time (67 seconds)

= 12 minutes, 47 seccnds.

7.2.6.E Impact to SEIFAC Resources

Ile implementation of the AVP approach under a Master/Slave Test
Ccnfiguration would rely heavily on the Master computer during the
d .veloplment phase of- the verification program, and during the actual
running of the certification process. 'he Master computer would need
to support a library system as well as the usual selection of support
scft-ware (assembler, linking loader and sirulator). EIAFAC personnel
wculd be required to develop and modify the test cases, bootstrap
supervisor and control programs.

'he cost data impact tc SEAFAC (and the previously discussed cost
data) is summarized in Table 7-7.

7-40

6176175& FINAL REPCF1 Fetruary 29, 1580

Table 7-7. Cost Summary for the AVP Aprcach Under A Master/Slave
Test Configuraticn

I Cost
I-----------

I an I
Item IYears I K $ 1

Non-Pecurring Start-Up Costs I I
I I II

Hardware I
- Development/Master Ccmputer 1 0 1 0
- MIL-STD-1553 and RS-232 !/C interfaces 0 0

Software
- MIL-STD-1750 Support Software (Cross Assembler,I 0 1 0 1

Linking Loader, Simulator) I I
- Bootstrap Load Program 0.3 21
- Source Tape Generation Program 0.3 21
- Control Program on Master 1.3 91
- Test Cases 110.0 1700 1
- Supervisor Program 1.1 1 77 1
- Library System on Master/Development Computer 0 1 0
- I/O Test Program 0.5 1 35

Other I
- Test Plan Document 0.3 1 21

TOTAL 113.8 1966 1

Recurring Costs/Computer

Hardware
- Maintenance 0 I 0 1

Software I I
- Maintenauce 1 0.1431 10.021

Control Program: 7.4K * 2 errcrs/K * $1,400/20
Test Cases: 2,000K * 0.1 errors/K * $1,400/30

Personnel
- Coverage to Initialize, Cbserve ar.d Analyze 0.04 2.8

Results (2 People for 1 Week)
- Technician to Supervise Integration of I/O 1 0.0041 0.281

Interface

Other
- Test Plan to Vendor with Verification Source 1 0.0041 0.281

TOTAL 1 0.1911 14.381
+--4

7-41

-P---~--- - -

(176175A FINAL EEPCP7 Yetruary 29, 1980

7.2.7 Dianostic Nodification in i Manua Iest ojfj.jgjj&

7.2.7.1 Description

A verification program based on modifyirg a diagnostic program
prcgrams for the MIL-STD-1750 to run under a Manual Test Configuration
clcsely resembles the end results from codifying an existing FTP into
a certification program as is described subsequently. The development
process would require the analysis of an existing diagnostic program
cr programs, to determine the amount of coverage each instruction is
given. The next step would be to remcve implementation dependent
code, add supplemental test cases, and modify the control structure of
tle diagnostic program to facilitate dynamic disFlay of results on the
printer.

Ile verification approach would be scdularized according to the
initial modularization of the diagnostic program selected for
modification. A completely new modulari2aticn scheme could be imposed
oriented to a supervisor module and several test modules, each
containing test cases verifying a certain type of instruction or
architectural feature of the machine. The estimated size of the
verificaticn program is 96K words, thus requiring three distinct
Frcgram loads. The Air Force would be responsible for making the
source available to the vendor for his in-house generation of IPL
tapes.

A risk factor, associated *ith the modification of differenit vendor's
diaoncstic programs, concernF the pctential inccmpatibility of
assembler language grammar formats, therety requiring a translation
prccess to occur.

1.2.7.2 Non-Recurring Start-Up Costs

Ile cost of inplementing a certification program tased on the
mcdification of existing diagnostic prcgram cr programs under a Manual
lest Configuration would consist of the follcwing software development
ccrronents:

riagnostic Modification - 7.0 man years
(Modify 18K BAL; Write 5.5K BAI)

lape Generator Program = 0.3 man years

lest Plan Document - 0.3 man years

TCTAI 7.6 man years

7-42

I617:A FINAL PEPCFT Fetruary 29, 1980

7.2.7.3 Recurring Costs

Ile recurring costs associated with the diagnostic modificdtion under
a Manual Test Con~fiuraticu are pcoporticnal to the staffing allocated
during the vendor verification prccess, and the actual time it takes
to complete the verification. A seccnd cost, though ncminal in nature
is the cost of generating the verification program scurce tape for
each vendor. The third component is the cost of sustaining the
verification software programs.

7.2.7.4 lime Required tc Perform Validaticr.

Ile time required to perform the entire verification car be calculated

using the formula developed previously.

Verification time = N, * 5 minutes to mount each tape +

N2 * 3 minutes ti load and go +

Nz * 8 minutes tc execute the Frogram and
print out the results

where:

N, = number of tape mounts = 3 worst :ase

N 2 = number of program lcads = 3

1Ler ti i~Li~u, Lime = I * c- + + 3 1 E £

= 4E minutes

7.2.7.5 Impact to SEAFAC Resources

'Ile implementation of a verification program based on the modification
cf an existing diagnostic program or programs to run under a Sanua!
Test Configuration would require the use of MIL-S'i-1750 support
scftware (cross assembler, linking lcader, and simulator) on the
development computer system. SPAFAC personnel would develop and
maintain the certification program as well as prepare the source tape
tc give to each vendor. During the verificaticn Frocess, there would
be no impact on the development computer, but SEAFAC personnel would
te required to assist in the integration, initiation, and observation
cf the verification program executing on the unit under test.

The cost data impact to SEAFAC (and the previously discussed cost
data) is summarized in Table 7-8.

7-43

E176175A FINAL F!PCF' Fetruary 29, 1980

Table 7-8. Cost Summary for the tiagnostic Approach Under A Manual
Test Configuration"

-- -------------------- 4

I Cost
I I--------------

| Man I
Item I ears I K $ 1

I Non-Pecurring Start-Up Costs I I I
I I I I

Hardware I I I
- Development Computer 1 0 0 1

Softuare I.
- MIL-SID-1750 Support Software (Cross Assembler,I 0 1 0 1

Linking Loader, Simulatcr) I I
- Diagnostic Program Modification 17.0 1490
- Source Tape Generation Program 10.3 I .

Other
- Test Plan Document 10.3 1 21

TOTAL J7.6 153

Pecurring Costs/Computer A

Hardware
- Maintenance 0 0 1

Scftware
- Maintenaace 10.053 3.7

40K x 2 errors/K * $1,40C/30

Personnel
- Coverage to Observe Execution and inalyze 10.04 1 2.8 A

Results (2 People for I Week)

Ofter
- lest Plan to Vendor with Verification Source 10.004 1 0.281

TOTAL 10.097 A b.7eA

A&1(

E176175A FINAL REPCFE Fetruary 29, 1980

7.2.9 Diagnostic Modification in a Master -_lav__ 1est Confiquration

1.2.F.1 fescription

A verification program based on modifyirg a diagnostic program or
prcgraiS for the MIL-STD-1750 under a Master/Slave Test Configuration
wcull cl'.: iY parallel a verificaticn program hased on tne
7cdificaticn of an existing FTP to run unde: a laster/$iave Test

would requize tLe analysis of the liagncstic pzcgram- so that tne
proper test cases could be added (to increase the coverage of the
tfEt) and deleted (to eliminate implemertation dependencies inherent
tc all diagnostic programs). The contrcl structure of the diagnostic
program would aiso nave to be modified tc facilitate communication
with the Master computer.

'te approximate size of the verificaticn program would be 96K, divided
into i supervisor program and test modules as descritEd previously.
71ic siFervisor program would communicate with a ccntrcl rrogram or the
-istfr computer, requesting test modules tQ be transferred and sending

tack test resuits. The control program cn the Master computer would
zo,:te output messages from the unit under *Est to a hardcopy device,
and load test modules from auxiliary storage to send tc the unit under
test urpc request. A bootstrap load program would also have to be
develope .itn the source being made available to the vendor prior to
jr-house testing.

1.2.E.2 Non-[,.,u. - r,,7 -Up Costs

Ile cost of Imple .,nring a verificaticr aFroach based on the
mcdification of Pxisting MTL-STD-17cO diagnostic prcgrams under a
Master/Slave Tvst Configuration would consist of the followir.:
scftware develoument components:

.4

E176175A FXIVL FEPOFl Fetruary 29, 1980

Diagnostic Modification 7.0 man years
(Modify 18K BAL; Write 5.5K PAt)

Ccntrol Program (Master) 1.1 man year
(2K HOL; 500 BAL)

!_ootstrap Pr.gram 0.3 man years
(400 bAL)

-ource Tape Generator Program 0.3 man years
(500 BAL)

I/O est Program (1K BAL) = 0.5 many years

lest Plan Document = 0.3 man years

TOTAL 9.5 man years

i.2.e.3 Recurring Costs

Ie recurring costs associated with modifyirg a diagncstic program to
r'ur under a Master/Slave lest Configuration consist of computer usage
cn the Master computer (zero cost) and ntaffing for the integration,
iritiation, observation of the verificaticn program and analysis of
t1e results. A second component is the cost of sustaining the
verificaticn program.

7.2.F.4 lime Required tc Perform Validatior

L
71 time required to perforr thf complete verificaticn process is
calculated by finding the summation of the Bootstrap Load and Go time,
Paster Computer Control Program Iitiaticr time, Test Case Execution
time and 1/0 transfer time. An estimdt* of these times follows:

7-Lit

hL
4---

6176175A FZNAL BEFClT Fetruary 29, 1980

Verification Program Execution
Plus Logging Results = 30 sec

I/O Transfer Time
96K words / 30K word/sec
(over MIL-STD-1553) - 3 sec

Verification time =ootstrap Load and Go (5 minutes) +

Master Computer Ccntrol Program
Initializaticn (minutes) +

7erificaticn Prcqram Execution
Time (30 minutes)

I/O Transfer !ize (3 seccnds)

= 40 minutes, 3 seconds.

7.2.8.5 Impact to SEAFAC Resources

Tle implementation of a verification program by modifying existing
diagnostic programs to run under a Master/Slave Test Configuration
would utilize the support software. (cross assembler, linking loader,
and simulator) during program develcpmaent. During the actual
verification process, the Master computer would he necessary to handle
the contrcl program function as well as the documentation of the test
results. SEAFAC personnel would be required to develor and modify the
verificaticn program, bootstrap and control programs.

The cost data impact to SEAFAC (and the previously discussed cost
data) is summarized in Table 7-9.

7-47

Ai,
-ow n .&

-- i -

E176175A FINAL FEPCPI Fetruary 29, 1980

Table 7-9. Cost Summary for the riagpostic Approach Under A
Master/Slave Test Ccnfiguration

S Cost

SMan I

Item iYearsl K S I

Non-Recurring Start-Up Costs

Hardware
- Development/Master Computer 0 1 0 1
- MIL-STD-1553 and PS-232 I/O Interfaces 0 1 0

Software
- MIL-STD-1750 Support Software (Crcss Assembler, 1 0 1 0

Linking Loader, Simulator) I i
- Bootstrap Load Program 10.3 1 21 1
- Source Tape Generation Program 10.3 1 21 1
- Contrcl Prograv on Master 11.1 1 77
- Diagnostic Modification 17.0 1490 1
- I/O Test Program 10.£ 1 35 1

Otter
- Test Plan Document 10.3 1 21

TOTAL J9.5 J665

Pecurring Costs/Computer

Hardware
- Maintenance 0 0

Software
- Maintenance 10.0591 4.141

44.4K * 2 errors/K * $1,400/30

Personnel
- Coverage to Initialize, Cbserve and Analyze 10 .04 1 2.8 1

Results (2 People for 1 Week) I
- Technician to Supervise 7ntegratior of I/O 10.0041 0.2B1

Interface I

Otter
- Test Plan to Vendor with Verification Source 10.0041 0.281

TOTAL 10.1071 7.5 1
--

7-48

E1761 5A FINAL FEPCFI Fetruary 29, 1980

1.2.S FTP in a Manual Test Configuration

7.2.9.1 Description

A verification program based cn the FTP design philosophy targeted for
a Manual Test Configuration could be develcred in twc different ways.
The first is to use an existing 1II-STr-17_O FTP to modify its control
structure to facilitate dynamic disrlay cf results or. the printer and
tc analyze and augment its test cases to achieve ?5 test cases per
irstruction average. She second approach is to implement an FTP type
yrcgram through the entire software develcpment prccess.

This type of verificaticn program would be divided irtc a supervisor
mcdule and several test moules. Each test module would contain test
cases verifying a certain type of instructicn or architectural feature
of the machine. The supervisor program is designed and coded under
the assumption that no instructions work. Ihis is implemented through
utilizing a small core set of instructicns to handle control and
slcwly introducing more instructicns as confidence in their
credibility is established (center cut approach). The supervisor
Frcgram invokes each test module and outruts test results.

Ite estimated size of the supervisor and test modules is 96K, thus
requiring 3 distinct . program loads. The Air force would be
responsible for making this source available to the vendor for his
ir-house generation of the IPi tapes.

7.2.S.2 Non-Recurring Start-Up Costs

The cost of impleaenting a certificatier rrcgram based on the FTP test
approach would depend on whether or not the program development was
tased on the modification of an existing FTP. The software cost
breakdown is- as foIlaws:

4 7-49

...I , : .' . t

E176175A FINAL REPCET Fekruary 29, 1980

FTP Modification -.1 man years
(*odify 30a of 30K lines of EAI = 9K)
(Write 1K BAL lines fcr Contrcl Program)

FTP Full Levelopment 12.0 man years
(40K BAL instructions)

Tape Generator Program 0.3 man years
(500 BAL instructions)

7est Plan Document 0.3 man years

TCTAL 3.7 man years/
12.6 man years

7.2.9.3 Recurring Costs

7le recurring costs associated with the FIE approach under a manual
Test Configuration are propcrtional tc the staffing allocated during
tle vendor verificaticn process and the actual tire it takes to
complete the verification. A second cost, though ncrinal in nature,
is that of generating the FTP source tape for the vendcr. The cost of
sustaining the verification scftware programs is the third component.

7.2.S.4 Time Required tc Perform Validaticn

Ile time reguired to perform the entire verificaticn consists of the
surmation of mount times, memory load times and execution times.
Pssuming 5 minutes to mount the tape, 3 minutes tc load memory and 8
virutes to process the test mcodules on each load tape and print out
tle results, the maximum time to run the verification test error free
' culd be calculated as fcllowE:

7-50

6176175A FINAL FEPCPT Fetruary 29, 1960

Verification time N, * 5 minutes tc acunt each tape +

N2 * 3 minutes to Icad and gc +

N2 * 8 minutes to execute the program and
print out results

where:

N, = number of tape mounts = 3 wcrst case

N2 = number of program loads = 3

Verification time = 3 * 5 + 3 * 3 + 3 * 8

= 48 minutes

7.2.9.5 Impact to SEAFAC Resources

he implementation of the FTP approach under Manual Test Configuration
ucula require the use of MIL-SID-1750 support software (cross
assembler, linking loader and simulator). The develcpment computer
wculd also be necessary to generate the source tape to give to the
vendor. There would be no impact to the development computer during
the in-house certification process. SEAFAC perscnnel would be
required to develop and maintain the certificaticn program.

TI e cost data impact tc SEAFAC (and the previously discussed cost
data) is summarized in Table 7-10.

7-51

A.1

6176175A FINRAL EPCET Fetruary 29, 1980

Table 7-10. Cost Summary for the FTP Arprcach Under A Manual Test
Configuration

.14---
I| Cost

1 I-------------
| Man I

Item hYears I K $1

Ion-Pecurring Start-Up Costs

Hardware
- Development Computer 0 0

Software
- IL-STD-1750 Support Software (Cross Assemhler,j 0 1 0 1

Linking Loader, Simulator)
- FTP Modification 1 3.1 1217 1
- FTP Full Development 112.0 1840 1
- Source Tape Generation Program 1 0.3 1 21 1

Otler
- Test Plan Document 0.3 21

TCTAI BY ICDITYING FSP 1 3.7 1259 1
TOTAl H fEVEICING NEW FTP 112.6 1882 1

Recurring Costs/Computer

Hardware
- aintenance 0 1 0 1

Software
- aintenance 1 0.0531 3.7

40K * 2 errors/K * $1,400/30

Personnel
- Coverage to Observe Execution and Analyze 0.04 f 2.8

Results (2 People for 1 Week)

Other
- Test Plan to Vendor with Verification Source 1 0.0041 0.281

TOTAL 1 0.0971 6.781
+---

7-E2

6176175A FINAL PEPCEI Fekruary 29, 1980

7.2.10 FTP in a Mast./Slave Test Conficuration

7.2.10.1 Description

A certification program developed using a FTP design philosophy
tarceted for a Master/Slave Test Configuration would result in a
ccpletely automated certification apprcach. 1he certification
rrcgram wculd be approximately 96K in size and be divided into a
supervisor module and several test modules. Each test mcdule contains
test cases verifying a certain type of instruction cr architectural
feature. The supervisor program would be designed using the center
out approach as previously described. The supervisor program would
communicate with a control program resident on the Master computer,
requesting test modules to be transferred, and sending back test
results. The control prograw on the Master computer would route
cutDut messages from the unit under test to a hardccpy device, and
Tull in test modules from auxiliary storage to send tc the unit under
test upon request. The certification program could be developed in
two different ways. The first is to take an existing ITP, and modify
its control structure to communicate with the contrcl program on the
Master computer. The second approach would be to implement an FTP
type certification program through the entire software development
process. A bootstrap load program would also have to be developed
with the source being made available to the vendor prior tc in-house
testing.

1.2.10.2 Non-Recurring Start-Up Costs

The cost of implementing a certificaticn approach based on the FTP
test approach would depend on whether or not the program development
was based on the modification of an existing F7P (or whether one is
available to modify). The software cost breakdown is as follows:

!

i 7-53

-VO

E176175A TINAL FEPCFT Fetruary 29, 1980

FTP Modification - !. 1 man years
(Modify 30% of 30K lines of EA = 9F)
(Write 1K BAL lines for Contrcl Program)

FTP Full Development 12.0 man years
(40K BAt instructions)

Control Program Development (?aster) 1.1 man years
(2K HOt; 500 B1L instructions)

Bootstrap Program Development (Slave) C.3 man years
(400 BAt instructions)

Source Tape Generatcr Program 0.3 man years

(500 BAL instructions)

I/C Test Programs (1K BAI instructions) = 0.5 man years

Test Plan Document - 0.3 man years

TOTAl E.6 man years/
14.5 man years

1.2.10.3 Recurring Costs

The recurring costs associated with at FTP apprcach under the
Easter/Slave Test Configuration are associated with system integration
and initiation. These costs should not be greater than 1 man day
total. The other costs would be attrituted to staffing during the
vendor certification process, and the cost for sustaining the
verification software programs.

7.2.10.4 Time Required tc Perform validation

Ile tire required to perform the complete verification tests is
calculated by finding the summation of the EootstraF Load and Go time,
Master Computer Program Initiation time, Test Case Execution time and
I/O Transfer time. An estimate of these times are as follows:

7-r-4

E1761-75A FINAL REPCRE February 29, 1980

Test Case Execution Time
5,000 test cases * 50
instructions/test case = 250,000 instructions

250,000 instructions / 500, CC0
instructions/second - 0.5 seconds

I/O Transfer Time
96K words / 30K words/second

(via MIL-STD-1553) 3.0 seconds

Verification time = Bootstrap lcad and Gc (5 minutes) +

Paster Computer Control Program Initialization
(5 minutes) +

Validation Execution Time (0.5 seconds) +

I/O Transfer Time (3.0 seconds)

- 10 minutes, 3.5 seccnds.

7.2.10.5 Impact to SEAFAC Resources

Ile irplementation of the FTP approach under a Master/Slave Test
Ccnfiguration wculd utilize the suppcrt software resident on the
Master computer during program development, and during the actual
verification process the Master computer would be necessary to handle
the control program function as well as docurentation cf test results.
S1AFAC personnel would be required to develop and modify the
verification program, bootstrap and control program.

7te cost data impact to SEVAC (and the previously discussed cost
eata) is summarized in Table 7-11.

7
i 7-5_5

E176175A FINAL PEPCPI Fetruary 29, 1980

Table 7-11. Cost Summary for the FTP Arprcach Under A Master/Slave
Test Configuration

Cost
I I--------------

jMan I
Item lYears I K 1

Non-Pecurring Start-Up Costs

Hardware
- Development/Master Computer 0 0
- IL-SID-1553 and RS-232 I/C Interfaces 0 0

Software
- BIL-STD-1750 Support Software (Cross Assembler,j 0 1 0 1

Linking Loader, Simulator)
- Bootstrap Load Program 0.3 1 21 1
- Source Tape Generation Prcgram 0.3 21
- Control Program on Master 1.1 77
- FTP Modificaticn 1 3.1 1217 1
- FTP full Development 112.0 1840 1
- I/O Test Programs 0.5 35

Otler
- est Plan Document 0.3 21

TOTAL BY .CiFYINC FTP 5.6 392
TOTAL BY DEVICIIG NEU Tr p14.5 11015 1

Pecurring Costs/Computer

Hardware
- Maintenance 0 0

Software
- aintenance 1 0.0591 4.141

44.4K * 2 errors/K * 21,400/-0

Perscnnel
- Coverage to Initialize, Ctserve ar(Anal 0.4 1 2.8 1

Results (2 People for 1 Week) I
- Tecnnician to Supervise Irtegratici. ot 1/c. 1-.0041 0.281

interface

Other
- Test Plan to Vendor with Verification Sourrx 0.0041 0.281

TOTAL 0.1071 7.5 1
--

7-56

6176175& FINAL FEPCF1 Fetruary 29, 1980

7.2.11 lockste2 in a Manual Test Configuration

7.2.11.1 Description

The Lockstep approach is not siitable for implementation under a
Manual Test Configuration. A verificaticn ircgram develcped using the
LccksteF philosophy could be imrlemerted if certain major
modifications were made to the initial aprroach. Twc approacnes wiii
Ie described in this section; a semi-LccksteF approach %here tne trace
interrupt is present (henceforth referred tc as the SLI apprcach), and
a semi-Lockstep approach where the trace interrupt is not present
(henceforth referred to as the SLNI approach) . Ecth approaches
execute sequences of instructions referred to as test buckets with
trace information being stored sequential in a data buffer area.

The trace interrupt collects the fcllowirg information:

16 General Purpose Registers 16

Instructicon Counter 1

Status Word 1

Fault Register 1

Interrupt task 1

TCTAL 20 words

Under the SLT approach, the trace information is automatically
ccllected and saved by the hardware. Under the SLNI approach, the
trace information is generated through a software implemented trace
routine. when a sequence of instructions has finished execution the
cEnerated trace information is compared against predetermined trace
information. Each approach contains the fcllowing modules:

- Supervisor = EF words

- Test buckets
5,000 tests cases * 10 words/test = 5CK words

- Predetermined Trace Results
50,000 cases * 20 words trace information = 1,000K words

Trace Buffer Area = 1K words

Tie SLNT has the additional requirement of haiing a software trace
module. The supervisor program executes the test bucket, compares the

7-F7

171 FINAL PEPCr' February 29, 1980

E176175~ FINAL PEPCF! February 29, 1980

cenerated trace information to the expected trace irfcrmatioL, ard
piunts out the results.

The size or the trace buffer area directly affects the size of the
test tuckets, and, the number of test buckets that can Le contaiLed in
cre program ioad. The fcllowirg equation exrresses this relationship:

Memory size = Supervisor si2e + Irace Buffer size +

lest Bucket area + Predeterrined Trace Information

%l ere:

Test Bucket area = Number of Test Buckets * Test Bucket Size
rredetermined Trace Information = Nueber of Test Buckets

* Test Bucket Size * 20

Trace Buffer Size
lest Bucket Size =------------------------

20 words per instruction

For a 32K machine, we are proposing an 8K supervisor and a 1K trace
tuffer.

let NTB = Number of Test Buckets
TBS = Test Bucket Size

TIerefore:

1024 words
TBS --------------------------

20 words per instruction

= 51 instructions per bucket

And substituting back into the top equation

32K = 8K + 1K + NTB * 51 + NTB * F1 20

23K = NTD * 51 (1 + 20)

ScIving for NTB:

23K
NTE = ------ = 22 test cases

50(21)

it should be mentioned that certain architectural features require a
set sequence of instructions to be executed in order to verify the
rroper execution. Therefore, the size of the test buckets must allow
for this factor. Analysis from data gathered on various test
aprroaches suggest that minimal test kucket size shculd be no less
t~an 30 words.

7-58

4 +.. - 4 ,, + - +m... . + + '+ + , . I . . . 'I P + +

a FTN kL FFr"t'. f L ItU i ',

3[Froac-s iz, ' i a ,t to 1 * (.' F I W(.- . t, ~ :,: r L / (. :-1t, t AK'
resFonsitle toL sendina 1.1 mo~awords a" lata tc tt - V I-L I: t:-
c eneraticn or the 4t) IP1. taFes. Note, t p ELI arid .N' e.-:ou cneL
cIcsely resemble the hVP arproacE.

.7. 11. NcNL-becurrin Start-r-t Cc :.

'E cost at imiL ementin,, i c,- tific-iticr -E,,Ld, i c l. tL. ., 2 -z

SLN art'rcacn would consist of tihe tllcwir , rthaL- c:-i.,-.t :

Test Cae Development

5,000 test cases * 10 words/
test case - %,OOC wcras

r0,000 words/(51 words/test
bucke t) - ,C tEst LuCiet

1 test LuckEt + results/
day productivity : PC :avs

450 days/year 2 4 rat Ye:tL

Supervisor Program DevelcFment Ia ran YaL
(4F EAL instructions)

Software Trace Module Development . ar. years
(850 BAL instructicns)

Tape Generatcr Program for Source C.3 man years

(r-00 BAL instructions)

Test Program Development 0.3 aan year

SLT TOTAL 6.4 man years

SIN' TOTAL 6.8 aan yCarI

Vi

7-.9

FINAL FEPCF1 February 29, 1980

.".I.11A kecu~rriLn Costs

Srpr-urrar1g costs associated with the Ell and SLwN approaches are
rIcrorti'Lda to tue staffing allocatEd during verification process,
are the time it takes to comrletE the verification. A second cost is
attriluted to generating the source load tape for each vendor's IPL
tarc ceneLatiui. Tae third cost ccmrcrert is the cost of sustaining
ttc verif1icatio sottware.

.. 11.U lime Bequired to Perform Validation

71 time requireO to perform the entirc verificatic ca.. be calculated
15inc te Itilowing tormiula:

Vcrification time = N, * time tc wcurt IPL tape +

N2 * time tc lcad iemcry 4 start program

N2 * tiMe to execute program load

h re:

N, = number cf tape ucurts

N, = rumber of Frcraw Icads.

; surir r. u1uLe! to) mcunt a tape, 3 tinutes to load tht memory and
!tart th' pLoqrdm and 2 ainutes to rrocess tle 22 test luckets in each
FIccrar 1oGo dLd FrInt cut tle results. The maxiruu tire to run the
%crification occurs whtr fi = N. (serarate mount required for each
T iccrar iodd) . The verification time tc ccuplete an error free
Fect+ior or the complete progrem bould IE:

7- 6

.~~7 - fN - -

E176171-A FINAL REPCR! February 29, 1960

Verificdtion time = NJ * 5 minutes tc mcunt each tare +

N2 * 3 minutes tc]cad and go +

N2 * 2 minutes to execute the program and
print cut results

where:

NJ number of tape ccunts = 46 %crst case

N2 = number of program Icads = 46

V; rification time = 46 * 5 + 46 * 3 + 46 * 2

= 460 minutes = 7 hours, 40 minutes

7.2.11.5 Impact to SEAFAC Resources

1he implementation of the SLT cr SLNT arprcach would require the use
of a development computer preferably with a library system to
facilitate the test bucket data base. Suprcrt software consisting of
cross assembler, linking loader and simulator must alsc be available.
The development computer would be used tc generate the source tapes to
cive to the vendor. There would he no impact to the development
ccmputer during the in-house verificaticn Frocess. SIAEAC personnel
wculd be required to develop and maintain the test buckets as well as
the supervisor program.

The cost data impact to SEAFAC (and the previously discussed cost
data) is summarized in Table 7-12.

7-61

E 176175A FINAL REPORT Fetruary 29, 1980

Tatle 7-12. Cost Summary for the iockster Approach Under A Manual
Test Configuration

- --
Ii Cost

I I-------------
I Man I

Item jYearsj K $

I Non-Recurring Start-Up Costs

Hardware
- Development Computer J0 1 0 1

Software
- MIL-STD-1750 Support Software (Crcss Assembler, 10 1 0

Linking Loader, Simulator) I
- Test Cases with Results 14.0 1280 1
- Supervisor Program 11.8 1126
- Software Trace Program 10.4 1 28 1
- Source Tape Generation Prograr 10.3 1 21 1

Other
- Test Plan Document 10.3 21

TOTAL WITH FAF AFE TRACE 16.4 j448
TOTAL WITH SCFTWAE TFACE 16.8 1476 I

Recurring Costs/Computer

Hardware
- Maintenance O0 0 1

Software
- Maintenance 1O.1461 10.221

Supervisor: 4.5K * 2 errcrs/K * $1,400/3C
Test Cases: 1,050K * 0.2 errors/K * $1,400/30

Personnel
- Coverage to Observe Execution and Analyze 10.04 1 2.8 1

Results (2 People for 1 Week)

Other
- Test Plan to Vendor with Certification Source 10.004i 0.25I

I TOTAL 10.19 1 13.3 1
--

7-E2

.AI

E17617EA FINAL REPC' - February 29, 1980

7.2.12 LocksteU in a Master/Slave Configuration

7.2.12.1 Description

A verification program developed using a Lcckstep desicn philosophy is
ideally suited for a Master/Slave Test Configuration. This approach
can le separated into four different implementaticrs. First, the
master ccmputer can be a "golden" MIl-STr-1750 ccmouter. Second, a
lII-STD-1750 simulator running on the development machine can te a

"golden" computer. Third, the MIL-STD-17EC under test may or may not
have the trace interrupt feature. The compensation for lack of
hardware trace has been discussed previcusly, and it is assumed that a
similar software module can be developed in this situation. A fourth
cEssible variation on this approach can cccur if we assume that no
simulator or "golden" computer exists. Instead, predetermined results
are calculated during test case development and these results are
ccmpared to the generated trace results. This variation closely
resembles the semi-Lockstep approaches (SiT and SLNT) described
previously. All approaches execute sequences of instructions re:erred
tc as test buckets with trace information stored sequentially in a
data buffer area. The trace data collected will consist of 20 words
reflecting the state of the computer after the execution of the
current instruction (see Section 7.2.11.1 for details). When a
sequence of instructions has finished execution, the trace information
generated by the unit under test (slave) is compared with the trace
information generated by the "golden" computer or simulator, except in
tie semi-Lockstep approaches wbere the generated trace data is
compared to the expected trace data. The results are then printed
cut.

Ihe verification program based on a Lcckstep approach under a
Master/Slave Test Configuration would be divided into the following
mcdule 3:

- ootstrap Load Program 1K words

- Supervisor = 8K words

- Test Bucket Data Base - 50K words

- Predetermined Results (optional) = 1,000K words

- Simulator (optional) = 300K words

- Control Program 8K words

- I/O Test Programs 4 LK words

7-63

E176175A FINAL FEPCFI february 29, 1980

Ihe following sequence of events describes the interaction and
function of each module. (Note: the semi-LockstEy approach is
described later.)

1. The bootstraD load program establishes communication with
the control program on the Master computer and starts the
transfer of a supervisor program. This process takes place
for the unit under test as well as the "golden" computer, if
applicable.

2. The supervisor program requests test buckets for execution
from the Master computer.

3. The unit under test executes the test buckets, while the
"golden" computer or the simulator executes the same
instructions.

4. The results from the unit under test and the "golden"
computer or the simulator are sent back to the Master
computer for comparison.

€. ~he results are recorded.

6. Steps 1 through 5 are repeated until all test buckets and
results have been transmitted, executed and compared.

Fcr the semi-Lockstep approach there is no "golden" computer, or
simulator and the seguence of events would flow in similar order with
the comrarison of generated results tc the predetermined expected
results being made by the control Frogram on the Master computer.

The follcwing is a breakdown of data transfers taking place via the
ccntrcl program:

Supervisor to Unit Under Test = 8K words

Test Cases to Unit Under Test = 50K wcrds

Pesults from Unit Under Test = 1,000K words

Eupervisor to "Golden" Computer = 8K %crds

Test Cases to len" Computer = 50K words

Fesults from "GolCliEi" Computer = 1,000K %crds

TOTAL 2,116K wcrds

7-64

- ------- k

E176175A FINAL REPC'l February 29, 1980

7.2.12.2 Non-Recurring Start-Up Costs

7he cost components for implementing a verificaticn aproach based on
a lockstep test approach under a Master/Slave Test Configuration would
depend upon the final variation of the test approach selected. The
software development cost would be as fcllcws:

Control Program (Master) = 1.8 man years
(3K HCL; 1K BAL)

Ecotstrap Program (Slave) 0.3 man years
(400 bAT.)

Supervisor Program = 1.4 man year

(3K EAL)

lest Buckets = 3.0 man years

Test Bucket Results (cptional) = 1.0 man year

Softuare Trace Module (optional) = 0.4 man years
(850 BAL)

Simulator (optional) 6.0 man years
(12K HOL; 2K BAL)

Source Tape Generator Program 0.3 man years
(500 BAL)

I/O Test Programs (1K BAL) = 0.5 man years

lest Plan Document - 0.3 man years

The Non-Recurring Start-Up costs for the "golden" ccmputer can he
"rcken down into the hardware procurement cost and the architecture
verification process performed to validate the integrity of the
"golden" computer. This verification is extremely crucial in assuring
the quality of the system and would require detailed analysis almost
ccmparable to any of the other approacbes.

lhe estimates for these costs are as fcllcws:

IL-SID-1750 Computer Acquisition and
Ground Support Equipment 1500K

"Golden" Computer Verification 2.5 man years

7-65

E176175A FINAL FEPCFI Fetruary 29, 1980

She software totals then for each approach are as follcws:

Lockstep with "Golden" Computer = 10.1 Iman years

lockstep with Simulator - 13.6 man years

Semi-Lockstep, predetermined Results = 8.6 man years

Note: An additional 0.4 man years would be added to each
total if a software trace feature was reguired to be
developed and integrated.

7.2.12.3 Recurring Costs

The recurring costs associated with the lockstep approach and its
variations consists of the hardware maintenance cost associated with
tie "gclden" computer, the personnel allocated during the verification
process, and the cost of sustaining the verification szftware
programs.

7.2.12.4 Time Required to Perform Validaticn

Ile time reguired to transfer, execute ard compare the 5,000 test
luckets can be calculated by substituting appropriate cons-ants into
tie follcwing eguation:

Verification time = Eootstrap load lime for Unit Uder "est +
Eootstrap Load lime for "Gclden" Computer +
Master Computer Initialization Time +
Test Case Transfer Time to Unit Under Test +
Test Case Transfer lime to "Gclden" Computer +
'est Case Execution Time +
Supervisor Program Overhead +
Test Results Transfer from Unit Under Test

to Master +
Test Results Transfer from "Gclden" Computer

to Master +
Time to Ccmpare 7race Information and Print

Results.

7-66

E176175A FINAL PEPCET Fetruary 29, 1980

Substituting line-by-line we have:

Verification time 5 min +
5 min +
5 min +
2 sec +
2 sec +
(50,000 instructions / 500,000 instructions/
sec = 0.1 ScC) +

(50K instructions * 1K overhead factor /
500K instructicns/sec = 100 sec) +

33.3 sec +
32.3 sec +

10 min

Total Time = 27 minutes, 50 seccnds.

1.2.12.5 impact to SEAFAC Resources

The irplementation of the Lockstep approach for a verificaticn program
under a naster/Slave configuraticn, vould recuire the use of a library
system on the Master computer to ccntrcl the develcpment of test
buckets and potentially their predetermined results. Support software
ccnsisting of a cross assembler, linking loader and simulator would
also have to be available on the Master. SEAFAC per-cnnel would be
recuired to develop and maintain the test buckets and all software
modules that comprise the verification program as well as supervise
the certification process each time a vendor brings a box to be
tested. If a "golden" computer is selected, then SEAFAC personnel
must also develop, verify and maintain it, and its related Ground
Support Equipment. Also additional space and power must be made
available to accommodate the "golden" computer.

The ccst data impact to SEAFAC (and the previously discussed cost
data) is summarized in Table 7-13.

S
7-67

-

E176179A FINAL FEPCF7 Fetruary 29, 1980

Table 7-13. Cost Summary for the Icckstep Aprroach Under a
Master/Slave Test Ccnfiguratior.

--
I Cost

IMan I

Item jYearsj K $

Non-RecurLing Start-Up Costs
Hardware

- Development/Master Computer 0 1 0
- MIL-STD-1553 and RS-232 I/C JntErfaces 1 0 1 0
- "Golden" Computer 1 7.141500

Software I I
- MIL-SID-1750 Support Software (Cross Assemtler, 0 1 0

Linking Loader, Simulatcr) I
- Bootstrap Load Program 0.3 21
- Source Tape Generation Program 0.3 21
- Control Program on Paster 1.6 126
- Supervisor Prcgram 1.4 9e
- Test Buckets 3.0 210
- Test Bucket Results 1.0 70
- Software Trace Module 0.4 28
- Simulator 6.0 j 420
- 1/0 Test Programs 0.5 35

Other
- Test Plan Document 0.3 21
- "Golden" Computer Verification 2.5 175

TOTAL WITH "GCIDEN" CCMPUTIF 117.2 11207
TCIAI WITH SIMULATOF 113.6 1 943

TOTAL WITH PREDETEFMINFD RESULTS 8.6 1 602
(NOTE: ADD $28K TC EACP FIGURE IF
NO HARDVAPE TRACE IS AVAILAFLE)

--

7-68

61761'5A FINAL REPCRT Fetruary 29, 1980

Table 7-13. Cost Summary for the Lcckstep Approach Under a
Ma!;ter/Slave Test Configuration (cont)

4---

SI Cost

I an I

Item JYearsj K $ 1

Recurring Costs/Computer
Hardware

- Maintenance 0 0
- "Golden" Computer Maintenance 10.0861 6.0 1

Software
- Maintenance

"Golden" Computer: 58K * 2 errors/K * 11,400/30 10.0771 5.411
Simulator: 71K * 2 errors/K * 11,400/30 10.0961 6.721
Predetermined Results:

1,051K * 0.2 errors/K * $1,400/30 10.14 1 9.811

Personnel I I
- Coverage to Initialize, Observe and Analyze 10.04 1 2.8 1

Results (2 People for 1 Week) I
- Technician to Supervise Integraticn of I/O 10.0041 0.281

Interface

Ott er
- Test Plan to Vendor with Verification Source 10.0041 0.281

1 I------I ------ I
"GClDEN" CCMEUTEE TOTAL 10.211114.77 1

SIMULATOR TOTAl 10.144110.08
PREDETEENINED PSULTS TOTAL 10.188113.17 1
--

7-69

6176175A FINAL FEPCFT Fetruary 29, 1980

7.3 QUA'LIT1 OF VERIFICATION APPROACHES Avr SOFTWAFE VALIDATICN COSTS

A discussion of the concepts bEhind the quality of verification
approaches and the methodolcgy used tc measure that quality and its
associated costs was described in earlier sections.

This section describes the applicaticn of that methodclogy. It is
presented in three parts. The first part describes the raw data
Sathered and the techniques used to gather that data. The second part
analyzes and summarizes this data. Finally, the third part preserts
an interpretation of the results.

7.3.1 Data Collection

7%c distinct steps have been identified as necessary for estimating
the costs to be assigned to the different verification approaches.
These have been discussed in detail previously. They are summarized
lere:

Step 1 Establish the relationship between the number of
architectural discrepancies remaining in a computer
after architectural verification (sell-off) and the
cost of permitting those discrepancies (because of an
imperfect verificaticn method).

Step 2 For each verificaticn method, determine the number of
architectural discrepancies expected tc remain after
verification, and, using the relationship established
in Step 1, compute the cost associated with those
remaining architectural discrepancies.

7.2.1.1 Data Collection for Step 1

Five avicnics programs %ere identified in the proposal to the Air
Fcrce as poteLtially useful for rroviding data for Step 1. These
were:

PAVE LOW
A-7
B-52D SPN/GEANS
F-111
E-3A AWACS

Ir the course of study, nine other potentially useful programs have
tEen identified. Each cf these is a hardware upgrade. (See Section
1.2.1.3 for a discussion of the significance of the hardware upgrade
aspect.) These programs are:

7-70

1761Z FINAL FEPC'T7 February 29, 1980

Spa,
A-6L
A-6 . siS n" Wiring System
ILAMP,.
EA-o6
F- 8

All en PIo-- investigated to obtair a general
ure:s. : • ,i of ea.. collected irclueEd tle mi-sioL, customer,
cc-Ert invc .v* .. 'ff date, nature of change, and the names
c4 t E, 6, *, configuration ccntrol, and Prograz Office
Cersc r.el.

These programs were then scrutinized for applicability of data. Eight
cf the fourteen Frograms were eliminated. Various reasons apply. For
Example, tte Space Shuttle software validation costs were not deemed
representative of the validaticn costs which would be expected for the
anticipated MIL-STD-1750 applications because of the special
reliability ,-cncerns due to large investments in the program and
rEdundancy 1testing necessary for manned safety. As another example,
t!.e A-F Univecsai lissile Wiring System was only in the final checkout
stag e at .he time of data ccllectior. Hence, the data is not

Thc' avicr'kcs upgrade programs which remain are:

E-52D SPN/GEANS

PAVE TACK
PAVE TACK/VATS
E-111
PAVE LOW

'fE ccomputers involved in these Ercgrams are shown in Table 7-14.
retailcd s ctware validation data and EC data were then clilected for
these progzams. These data are listed ir Tables 7-15 through 7-20,
respectively.

7-71

I,

- -. 4----

6176175A FINAL PEPOFI February 29, 1980

Table 7-14. Hardware Upgrades

I Sell-Off I Criginal ComFuter/I New Co1puter/
Program I Date I Part Number I Part Number

I-7 10/15/76 TC-2A(74) I IC-2A (76)
6870600 6E70500-1
(Pre-Prod) (Prod)

PAVE LCW 01/26/79 IC-2A (76) IC-3B
6870500-2 E259000-1

F IVf TACK I 04/01/76 TC-3 TC-3
687C4C0-1 6870400-1

PAVE TACK/VATS 02/28/78 TC-3 TC-3A
6870400-1 6870400-2
(Pre-Prcd) (VATS)

F-111 02/17/78 CP-2 CP-2A
E195500-1

B-5 2D 2/24/79 AP-101 AP--01C
STV/GIANS 616OC25= 6217800-20

7-7 2

6176175A FINAL PEPCPT FELruary 29, 1bO

Table 7-1_. A-7 Program Eata

--------------------- ---

Prccram: A-7

Customer: Navy/LIV

Ccmputers: TC-2A (74), converted to TC-2A (76)

Sell-Off Date: 15 October 197E

Cerationai Flight Program Validation: Naval eapons Center,
China Lake

I--
Jfuncticn Description: Navigation and weapons delivery for
[Close Support Light Attack aircraft.
I
IEardware Change Summary: Changed from Modular Core Memory (MCd)
ltc rouble Density lodular Core Memory (tMC!M), increasing maximum
memory capacity from 4OK by 16 bits to 64K by 17 bits. Added memory
Itarity, hardened base registers, and five instructicns. OFtimized
11/0 logic and increased CPU performance. Added surge amp in ccnverterl
Ifcr wheels drive.

IScftware Revalidation Data: The navigaticn and weapons delivery
Irogram was revalidated by the Navy at the China Lake Navai Weapons
ICenter. The program was 16K in length. Effort expended was 96 man-
Iweeks. The initial validation effort uas performed or a laboratory
Isimulator, then 30 flight tests were performed.
I
IEC Data: Twenty-four architecture related changes have been made
Isince sell-off. (See the discussicn about the scope cf
"architectural relevance" in the Section 5.2.1.2.) These ECs are
plotted in Figure 7-4.
--

7-73

1If 17A F!NNL FEPCF'" FrtLuary 29, 1980

4-

Month

2-

210 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Months after Sell-Off

Figure 7-4. ECs Since Sell-Off fcr the A-7 Proclam
(Sheet 1 of 1)

7-74

E17F175A FINAL PEPCP - Fetruarl -9, 1960

Table 7-16. B-52D SFN/GEANS Program Data

+--

Frcgram: B-52D SPN/GEANS

Customer: Air Force/Warner Rcbbins Air logistics Center

Computers: AP-101, converted to AP-101C

Sell-Oft Date: 12 :arch 1979

Ccerational Flight Program Valilaticr: IE!

--
JFuncticn Description: The ccmcuter is used to ccntrcl an inertial

IMeasuring Unit (platfcrm) for precision navigation of the B-52L.

1ihis unit is designated SPN/GEANS (Standard Precision Navigation/
IGimballed Electrostatically Suspended Gyro Airborne Navigation

ISystem).
II
Ifardware Change Summary: The AP-101 computer was replaced with the
1PE-I01C. 1his involved a complete re-rackacing of the macnine,
lincluding CPU, I/O, and memory.

ISot t ware Revalidation Data: Software revalidation began on 12 MarchI
I. 179. Approximately 1 '3 of the effort was for adding new functions;
Ithe 6ata has this taken into account. Flight testing has not begun.
ITherefore, estimates of the total expected number of fligh t tests havel
Ibeen made by personnel experienced in flight testing. Projected I
Jeffort is 43 man weeks. Approximately twelve flight tests are
lexpected. The size of the program beinc revalidated is 18K.
I I
IEC Data: Twenty-six ECs of architectural relevance have been written
Isince sell-off. (See the discussion about the scope cf "architecturalt
Irelevance" in Section 5.2.1.2.) These ECs are plotted in Figure 7-5. 1

+---

7-15

I|

617615A FINAL REPCF" February 29, 1980

15

13.---

124
ECs per 12 I
Month 11

10-

8-

6-

5-

4-

3--

2-

1 2 3 4 5 6

Months after Sell-Off

Figure 7-5. ECs since Sell-Off for the P-52D SEN/GEANS Program
(Sheet 1 of 1)

7-16

ElIE17-A FINAL REPCPT FEbruary 29, 1980

Table 7-17. PAVE ACK Frogram Data

Program: PAVE TACK

Customer: Air Force/Ford Aerospace

Computers: TC-3

Sell-Off Date: 1 April 1976

Cperational Flight Program Validation: IEF

--

Ifunction Description: The functicr is tc identify targets fcr
Iprecision electro-optical weapons using a laser ranger/designator pod.l
IA TV displays target information tc operator and a pod interfaces
Iith the NAV conputer. This is used on both the F-4 and E-111
Illatforms.

lHardware Change Summary: The memory was dcubled in size from 8K to
116K, by converting from one MCI tc two MCI.

ISoftware Revalidation Data: Two forms cf self-test facilitated
Icheckout. The first was a minimal test which is invoked periodically
iduring the execution of the Operational Flight Prcgram. The second I
Iwas a Self Test Mode which drives the pod hardware and feeds back
Idata for a closed-loop check.
I
1.he program which was revalidated was 8K in size and took one man weeki
IT!us one flight test to revalidate.

IEC Eata: One EC of architectural relevance was written after sell-offj
1(1 April 1976).

+--

6176115A FINAL PEPCR7 FEtruary 29, 1980

Table 7-18. PAVE LOU Program data

4---

Program: PAVE LOW

Customer: Air Force/ASD/SDX

Computers: TC-2, converted to TC-3B

Sell-Off Date: 26 January 1979

Operational Flight Program Validation: IFM

-- I
Ilunction Description: The PAVE LO missicn is a heliccpter search
land rescue during night/adverse weather. The equipment performs
Irrecision navigation and locates survivcrs. The computer estimates
Isurvivor latitude and longitude (tased on "beeper" information) and
Imanages a platform, IR sensors, and terrain following radar.
I
IBardware Change Summary: The unique EAVE LOW I/O was incorporated
into the computer LPU. Processor speed was increased. mecry size
lincreased from 16K to 32K by replacing the Basic Operating Memory
]with DMCM. New instructions were added and the lcgic was optimized.
I
ISoftware Revalidation Data: Pevalidaticn effort consisted of four
man days of lab effort and cne flight test. The program which was
Irevalidated was 16K in length.
I
i!C rata: Only one architecture related EC was uritter since sell-off
lcn 26 January 1979.

--

7-78

E1 E1"7 FINAL PEPCPT TFEruary 29, 1980

Table 7-19. PAVE TACK/VAIS Program Data

4--4

I Program: PAVE TACK/ATS

Customer: Air Force/Ford Aercspace

ComDuters: TC-3

Sell-Off rate: 28 February 1978

1 Ccerationai Flight Program Validation: IEM

--
Ifuncticn Description: The functicn is tc identify targets for
Iprecision electro-optical weapons using laser ranger/designator pod.
JA TV displays target information to operator and a pod interfaces witbI
Ithe NAV computer. This is used on both the F-4 and F-111 platforms.

IHardware Change Summary: Additional I/C channel capability was added
]to interface with the Video Augmented Tracker System. This allowed
fa 50 KfZ input channel to be multiplexed between the laser ranger and
[the Video Tracking Unit.

IScftware Revalidation Data: Two forms of self-test facilitated
Icheckout. The first was a minimal test %hich is invoked periodically
Iduring the execution of the Operational Flight Program. The second
Iwas a Self Test Mode which drives the pcd hardware and feeds back datal
Ifor a closed-loop check.
I
IThe program which was revalidated was 12K in size and took two man-
jueeks plus one flight test to revalidate.

FEC Data: No engineering changes reflecting architecture deviations
Ivere written since initial sell-off (2/28/78).
+---

7-79

6176115A FINAL PEPCPS Fetruary 29, 1980

Table 7-20. F-111 Prcgrav Data

+---

I Prcgram: F-111

Customer: Air Force/S MALC

Computers: CP-2, converted to CP-2A

Architecture Verification Date: 17 February 1978

Cperational Flight Program Validation: Sacramento Air Logistics
Center, Engineering Division

----- ---I
Ifunction Description: The F-111 is a tactical fighter-bcmher for
Ideep interdiction and strategic missicrs. She computers perform
Inavigation and weapons delivery.
II
Iardware Change Summary: The CP-2 machine was completely redesigned
land repackaged, while retaining instructicr set ccmpatitility.
IStorace capacity was increased from 16K by 18 bits to E4K by 18 b~ts.
[Perforrance was increased by a factor of three.
I
ISoftare Revalidation Data: The CP-2A brassboard machine was sub-
Iritted to the Air Force as part of an unsolicited prorcsal. This
Imachine was evaluated by validation of proper executicn of various
IF-111 Operational Flight Programs. Tests were conducted at the F-111
I vionics Integration SuFort Facility, using both static and
Isimulated flight conditions. No flight tests were performed; however,I
lit was estimated that six flight tests vculd be necessary. Validationi
Iwas completed for three OFPs which were 20K, 16K, and 16K in length. I
17he 20K program was a ccmposite of the cther two. Effort expended
Ifor these programs was 54 man weeks.

11C Data: Since the machine which was used for validation
Iwas a breadboard, changes were recorded but not formally written up I
las _Cs. Bence, no time informaticn is available. A total of nine
larchitectural discrepancies were found. lesting took place over a
12 1/2 month period. Use of the machine was then discontinued.
I(Note that this machine was in the foru of an unsolicited proposal;
lit %as rot sold.)

7-80

E11611rA FINAL BEPCF7 February 29, 1980

EC data collection typically began ty obtaining an "As-Euilt List" for
the computer in question. This list ccntains the part numbers for all
of the major subassemblies in each computer. Summary EC information
was obtained for each major subassembly in the ccmputer via the Owego
Part Number Identification User System (CEIUS). This is an automated
system which allows a user, via a keyboard/display terminal, to obtain
a listing of all ECs written against each part number.

Each EC was physically pulled from the records center and examined to
determine its architectural relevance. (See the discussion about
architectural relevance in Section 5.2.1.2.) Each EC contains
uarked-ur drawings, wiring lists, parts lists, and a description of
tIE nature of the change. Fcr each EC judged to be relevant, the EC
number and date were recorded.

The software revalidaticn data listed in Tables 7-15 through 7-20 is
summarized in Table 7-21. The cost figures, both in terms of total
cost and cost per K lines of code, are alsc shown in Table 7-21. Two
cost elements comprise the total. The first is the weekly wage cost,
11,346, which is multiplied by the number of man weeks cf effort. The
second is the average cost per flight test. Two data points are
average] here: the current average cost used by the Navy at the China
lake Naval Weapons Center which is $2,000 and the anticipated cost of
the fliaht tests for F-111, which was 13,CC0. The resulting $2,500
averace is multiplied by the number of flight tests.

Table 7-21. Operational Flight Program Revalidaticn Data

--

I I Revalidaticr Data I I
S------------------------------- j Cost per I
I I Program I IFlightl Total I K Lines I

I Program IComputerl Size I MV I'lests I Cost I of Code I
I-- I

TC-2A I 16K 96 1 30 1 204,21E1 12,764
IIIII II

IPAVE LOW | TC-3B I 16K 1I 1 1 3,E461 240
I l
IPAVE TACK I TC-3 I 8K 1 1 1 1 1 3,E4EI 481

IPAVE TACK/VATS I TC-3A I 12K 1 2 1 1 1 5,1921 433

IF-111 J CP-2A I 20K,16K, I 94 I 6* 1 87,CE41 1,686 1
I 16K I I I I I

IIII I I I I
IE-52D/SPN GEANSI AP-101CI 18K 1 43 1 12* 1 87,E781 4,882 1
I--I
*Includes projections.

--

7-81

In A-

6176115A FINAL FEPC'! February 29, 1980

7.3.1.2 Data Collection for Step 2

,_le application of Step 2 described above required the collection of
IC data for three types of verification approaches:

Functional

Random

Lockstep

For the Functional approach, three of the programs which have already
teen investigated are applicable. These are B-52D SPN/GEANS, A-7, and
F-111. The machines in these programs underwent complete, or nearly
ccmplete, changes. As a result, the data should represent the results
that could be expected for applicaticn of a Functional type
verification process to a typical MIl-STD-1750 machine. (Note the
deficiencies, however, in the F-111 data, described in Table 7-20.)
lhe EC data in Tables 7-15, 7-16 and 7-20 apply.

Tcr the Random approach, an IEM S/370 Model was investigated.
Urfortunately, no machines have been built which were tested solely
with the Random approach. In all cases, the Functicnal method w~s
also applied. The test package consisted of a control program
(cperating system) and the following tests:

- Storage

- Relocation Architectrre

- Operating System Hardware

- Storage Protection

- Miscellaneous I/C

Key to this package is the use of the randcr instructicn generator.

rata cathered were Requests for Engineering Action (REAs) which are
Equivalert to Engineering Changes. Each PEA provides a description of
the change and the reason for the change. Tach PEA was examined as to
its relevancy; non-architecture related changes were thrcwn out.

first ship was March 17, 1978. REAs prior to this date were ignored.
Change data are shown in Figure 7-6.

7-82

E176175A FINAL REPCU February 29, 1980

:4
ECs
found 3-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Months after sell-off

Figure 7-6. ECS of Architectural Relevance for System/370 Model
versus Time

Fcr t!.e Lockstep approach, the IBM Series/1 Model 4S52 was chosen.
This method has been employed by the IE1 General Systems Livisicn to
test several models of the Series/1 cceputer: the 4953, 4955, and the
4S52. Lockstep had been applied to the first two models subsequent to
first ship. Only the Model 4952 had been verified by the Lockstep
methcd prior to first customer ship. first ship date was June 4,
1S79. At the time of data collecticn, August 29, 1979, no Engineering
Changes had been written against this model.

Also required for the application of Step 2 was the collection of
machine size and EC distribution informaticn for the rcrmalization of
the EC data. The methods for application of these data are described
in Appendix B.

The machine size data was gathered with the use of the OPIUS system
and computer-generated indented parts lists. For upgraded computers,
each subassembly parts list was ccmpared for differences between the
original and the upgraded machines. These differences were tabulated
and totaled to arrive at the machine change size in terms of gates,
microcode bits, and main storage bits. These data are shown in Table
7-22.

i 7-83

6176175A FINAL PEPCFP Fekruary 29, 1980

Table 7-22. Hardware Change Size/Machine Size

*-- --

I Logic I Microcode I MaiL Store
Program I (Gates) I (Bits) I (Bits)

A-7 15,350 0 458,752

PAVE ICU 7,519 0 0

PAVE TiCK 0 0 131,072

PAVE TACK/VAIS 4 0 0

F-111 15,715 547,136 1,179,648

F-52D/SPN GEANS 29,894 611,201 1,179,646

Series/1* - - -

System/370 Model 274,000 1,719,296 8,368,608

-- I
* Since no ECs were fcund, no machine size data collEction was

necessary.
--

fach relevant EC was examined to detervine whether the cause was
logic-related, microcode-related or mair store-related. These data
are shown in Table 7-23.

7-84

E176179A FINAL FEPCF7 February 29, 1980

Table 7-23. Distribution of ECs

Program logic I Microcode I Lain Store

A-7 16 0 8

PAVE LOW 0 0 1

PAVE TACK 1 0 0

PAVE TACK/VATS C C 0

I-111 6 1 2

E-52r/SPN GEANS 16 10 0

Series/1* - - -

System/370 Model 26 14 4
--
*Since nc ECs were found, nc machine size data ccllecticn was
necessary.

--

71e procedure for normalization of architectural discrepancies
requires information on the size of the ncninal MIL-Slr-1750 machine.
Tte ncminal size of the MIL-STD-1750 machine is assumed to be the same
as the machine used in E-52D SIE/GEANS. This machine, which was
recently developed, contained 64K by 32 bits cf mair storage, two
MIL-STD-1553 channels, and discrete I/O. Performance is approximately
500 KCPS. The unit is packaged in a full ATR ccnfiguration. This is
lelieved to be typical of the forthcoming MII-STr-1750 Eachine.

'7.2. 2 Arlys 2f Quly Dlata

This section contains an analysis of the data descriLed in the
previous section. It begins with the estimaticn of the total number
of architectural discrepancies for the Frcgrams previously described.
This is done with the aid of a set cf APL programs which were written
to implement the correlation coefficient and squared error techniques
described in Appendices B and C.

Next, the relationship between the projected total Lumber of
architectural discrepancies remaining after verification and the cost
of having those discrepancies remain is established.

Finally, the quality associated with each verificaticn metaod is
discussed.

7-e5

E176175A FINAL REPCF' Felruary 29, 1980

7.3.2.1 Application of Correlation Coefficient and Squared Error
".echniques to EC Data

Engineering Change data for the various programs ard machines has
Frevicusly been described. To summarize the results, sufficient data
exist to estimate the total number of architectural discrepancies for
three machines/programs: A-7, B-52D SEN/GEANS, and the System/370
Mcdel. Series/i, PAVE LOW, PAVE TACK/VAIS, and PAVE TACK have either
zero or one EC; no projection is therefore possible. The F-111 data
has no time information and the method cannct be applied.

7c aid in determining the projected total number of arclitectural
discrepancies for A-7, B- 2D SEN/GRA S, and the Systes/370 hodel, APL
rrcgrams have been written which apply the ccrrelatioh ccefficient and
scuared error techniques which are descriled in Appendix B. Five
programs have been written:

X FIT Y
F
MEAN
VAR
ESTIMATE

ft-ese programs are listed in Appendix C. The prccram X FIT Y
transforms the cumulative data, g(t), and computes the best fitting
line using the linear regression formulas given in Appendix B. It
calls upon the programs MEAN and VAF tc compute the means and
variances required for the regression analysis. X FIT I also computes
the correlation coefficient and the squared error. For the latter, it
calls upon the program F to calculate the values of the fitted curve,

Finally, the program ESSIMATI is used to estimate the total number of

architectural discrepancies. It does so hy successive approximation.
It chooses values of C (as previously discassed) and invokes X FIT Y
tc provide the corresponding correlation coefficierts and squared
errors. It determines how to change C to obtain either a higher
correlation coefficient or a lower f red error. it continues to
test different values of C until the L estimate of C is obtained.

Notice that the program ESTIM.ATE .s listed in Appendix C prints "A-7
Irgineering Changes". This is changed fcr each new set cf data.

AJsc note that, as listed, it optimizes based on the squared error. A
simple-change makes it optimize on the ccrrelaticn coefficient.

The scuared error is a letter measure cf fit, since it compares the
calculated curve, g(x) , with the actual data. The correlation
ccefficient, however, measures the degree cf fit of the calculated
line with the transformed data. Since the transform is non-linear,
error may be introduced. Because of this, the squared Error technique
is used for estimation of C. However, the calculations are also

7-8E

.. - i A ft

r176175A FINAL FEPCFT FEtruary 29, 1960

performed using the correlation coefficient technique, since it is
expected that the errors introduced would he small. The results serve
as a check of the squared error methcd, and are provided for
information purposes only.

The results of these programs are provided in Appendix D. They are
summarized in Table 7-24.

Table 7-24. Estimate of Total Architectural Discrepancies

I I Estimated Ictal Architectural riscrepancieL
ITotal ---

Proaram I ECs I Squared Errcr I Correlation Coefficient
I I Method i Methcd

I E-12D SEN/ 26 27 30
GYANS

A-7 24 29 2E

System/370 I
I Model 44 68 6E

It is satisfying to note that the projections using tie tuo different
methods track quite. closely. It is alsc satisfying tc ncte that the
projections for the System/370 Model using the two methods compare
favorably with the projection of E4 total architectural discrepancies
that was obtained previously using the decreasing fXE9_teftial method.

7.2.2.2 Projections for Programs with Insufficient Data

As was mentioned previously, five of the programs dc not have
sufficient data to permit use of the foregoing methods. Four of these
five have either zero or one _C written against them. Since
insufficient data points exist to fit lines for these four programs,
the data will be used as is; i.e., the projected tctai number of
architectural discrepancies is the same as the number of Cs found to
date.

The fifth program is F-111, which has nine architectural discrepancies
lut no time informaticn. Because of this, the methods of projection
cf the total number of architectural discrepancies carnot be applied.
Again the data is used as is; nine architectural discrepancies is the
rrojected total for F-111. This necessarily biases the data, but
there is another, offsetting, bias. This will be discussed more fully
in Section 7.3.2.4.

7-87

E176175A FINAL FEPCF1 FEtruary 29, 1980

7.3.2.3 Estimation of the Cost vs Architectural Discrepancies
Pelationship

71e cost of validation of Operational flight Programs (CFPs) versus
tle projected number of architectural discrepancies remaining after
verification is plotted in Figure 7-7. The data are alsc summarized
ir Table 7-25. These data have been previously descritEd in detail.

13-

A 7

12-

11-

10-

9-

THOUSANDS OF 8
DOLLARS PER K
LINES OF CODE

7-

6-

5-0

4--
B. 52D SPNIGE ANS

Pave Tock/VATS
3-

2Pave Tack2--

F 11-

P pave Low

5 10 15 20 25 30

PROJECTED TOTAL NUMBER OF
ARCHITECTURAL DISCREPANCIES

Figure 7-7. Cost versus Architectural Discrepancies

7-22

F17F17cA FINAL PEFCY7 February 29, 1980

Tahle 7-25. Summary of Architectural Eiscre ancy and Fevalidation
Cost Data

+--

I I Total Projected I Total Revalidationj
I Architectural I Cost Per F Lines i

Program I Computer I Discrepancies I cf Ccde
I---

A-7 TC-2A o29 12,764

PAVE LCW TC- E 1 ,26

I PAVE TACK TC-2 I 1 1

PAVE TACK/VATS TC-3A C 433

F-11 ICP-2A 9 1,686

E-c2D/SEN GEANS AP-101C 1 27 4,682

7 e best fatting line is alsc drawn in Figure 7-7. 7he equation :"
t1e line was calculated via linear regression analysis using the
eauations for slope and intercept described in Appendix E. !he
ecuation is:

Dcllars Projected Total
--- -154 + 320 * Number cf Architectural; (7-1)

F Lines of Code iscreparcie]

The correlation coefficient for this equation is 0.E77. This is a
measure of the degree of fit cf the given pcints to the least squares
straight line. A value of one indicates exact correlation; a value of
zero indicates no correlation. In this case, a reasorable fit of the
data to the least-squares straight line is indicated.

The negative value of the intercept warrants discussic. If a near
perfect verification prcgram were available (i.e., the Frojected total
number of architectural discrepancies after verification would
approach zero), the minimum cost to be incurred would be the cost of
the basic flight test to validate the crerational flight program, or
$2,500. Tc translate this to dollars per K lines of ccde, this figure
could be divided by the average size of the Operational Flight
Programs, in this case 15K. This yields a value (which is tne
expected y-intercept) of $167 per K lines cf code.

Naturally, a negative cost for this flight test is physically
iiiossihle. jiovever, when the least-scuares line cf Figure 7-7 is
examined, it can be easily seen that a y-intercept of 1167 instead of
a -$154 would not significantly alter the fit of the line to the data

7-E9

E176175A FINAL FEPCF" Felruary 29, 1980

Tcints. In summary, the negative intercept does not severely limit
tle credibility of the fitted line.

Note that this curve does not, by itself distinguish between different
verification methods. But, given the quality (in projectcd total
rumbet of architectural discrepancies) cf a particular certification
nethod, the associated cost can be determined.

As an example of the use of this equation, suppose that verification
Method A were determined to have 20 expected architectural
discrepancies remaining in a machine the size of a typical
M!L-STD-1750 implementation after certification. 7his would yield

Doila rs
-1c_4 + 220 * 20 (projected architectural

K lines of Code discrepancies)

E,246

:f one assumed an average Operaticnal Flight Program size of 32K and
Expected the numner of Cperational flight Programs to he written over
t1e useful life of MIL-STD-1750 to he ten, then the total cost is:

cost = 6246 Dollars 32 K Lines of Code
--

K Lines of Code Cyerational Flight Program

10 Operational Flight Programs

= $1,998,720

This may be thought of as ar estimate cf tie Eenalty (cost) that must
tE paid for having a less-than-perfect verification metnod
(hypothetical Verificaticn Method A, in this example).

7.1.2.U Eiscussion of the Data Ecints for the Cost versus
Srchitccturai Discrepancies Belationship

Cf the six data points used in constructing tie cost versus
architectural discrepancies relationship, two have restrictions which
reduce the confidence which can be placed in them.

'fe first is B-52D SPN/GEANS. This program has yet to begin the
flight test portion of software validation. Henc -, ar estimate was
rade of the expected number of flight tests by a scftware enaineer
%ith significant experience in this area. Naturally, the data point
is no better than the estimate. Rhile ccmparisorn with the A-7 data

7-90

6176175A FINAL PEPCVI Fetruary 29, 1980

Ecint suggests that the estimated number of flight tests may be low
and that the cost for E- 2D SPN/GEANS may be understated, the data
Fcint is used as is with the above caveat.

The second data point in F-111. Both the software validation cost and
the projected number of architectural discrepancies are known to be
understated. The reason for the cost bias is that one cf the programs
%hich was validated was a ccposite of the two others. As a result,
scme cf the code which was validated was redundant; tle cost data is
an understatement of the true cost.

The reason for the bias in the projected number of architectural
discrepancies iies behind the inccmplete nature of the program. IbM
submitted an unsolicited proposal to replace the two CP-2 computers
cnhoard the F-111 with a CP-2A computer. A brassboard machine was
built and was used for Operational Flight Program revalidaticn by the
Air Force. Only the simulation portion of validation was completed
however; no flight tests were performed. Because of the informal
nature of the brassboard development, changes were recorded but not
fcrmally written up as ECs. Upon ccmpleticn of the simulaticn portion
cf the validation, use of the machine was discontinued. Estimates of
the expected number of flight test and asscciated costs were made by
tle Air Force, however. In summary, the fcllcwing deficiencies exist
with the F-111 data:

1. The lack of time information dces not permit a projection of
the total number of architectural discrepancies. Also, the
amount of data has been reduced because use of the machine
was discontinued. Since the number of ECs is used directly
as an estimate of the prcrected total number of
architectural discrepancies, this results in an
understatement of the total number of architectural
discrepancies.

Since, in this case, the number of ECs is used directly as
an estimate of the projected total number of architectural
discrepancie- this results in an understatement of the
total number of architectural discrepancies.

7. The flight testing portion of the software validation costs
is an estimate.

The three OFPs were somewhat redundant in nature, resulting
in an understatement of the validation cost per K lines of
code.

Since the biases for the F-111 data point are opposing, it is not
clear which would dominate any changes tc the final relationship shown
in Figure 7-7.

In summary, both the F-111 and B-52 SPN/CEANS data points are taken as
is with the caveats about credibility abcve.

7-191

... . . . , : ' -, - -. .7 4*

E176175A FINAL FEPCFI Fekruary 29, 1980

7.3.2.5 Analysis of Quality Data for Different Verification Methods

As summarized in a previous section, Step 2 in estimating the costs to
hE assigned to the different verification approaches requires that,
for each verificaticn approach, the number of architectural
discrepancies expected to remain after verification be estimated.
This wculd then be applied to the cost versus architectural
discrepancies relationship obtained in the previous section.

The data which were collected for Step 2 appeared previously in Tables
1-15, 7-16, and 7-20 and in Section 7.3.1.2. They are summarized in
Table 7-26.

Table 7-26. Architectural Discrepancies Data for Lifferent
Verification Methods

4.---

I I I Total Projected
Verification j Computer/Program I TCs found A rchitectural

Method lI iscrepancies

Iunctional TC-2A/A-7 24 29
Type

CP-2A/F-111 9 9

AP-bi0 C/ 26 27
B-52D SPN/GEANS

Fandcm Type System/370 4 66
model

iLockstep Step Series/1 0 0
--

An examination of Table 7-26 indicates that there is irsufficient data
tc satisfactorily discriminate between the three verification methods.
While the data for the Functional type certificaticn method appear to
be satisfactory, the single data points of the Eandom type and
lccksteD type verification methods dc not provide sufficient
ccnfidence to permit their aFplicaticn to the cost model.
Ttrthermore, the Series/1 data imply that the Lockster type zethod is
cf perfect quality. This contradicts intuition.

Because cf these deficiencies in the data, there is not sufficient
ccnfidence to permit distinction between the different verification
rrcthcds on the basis of quality. The estimation of the costs to be
assigned (Step 2) will not be fully ccupleted and the normalization
methcdology described previously will not be fully applied. This does
not ccmrletely invalidate the results cf the quality investigation,
lcwevEr. Some analysis can be performed with the recognition that
crly limited ccnfidence can be obtained in the results and the results

7-92

6176175 FINAL REPCVT February 29, 1980

mrst be appiied with caution. This analysis appears below. The
nEanirg of the inability to complete Step 2, as well as the
conclusions to be drawn from the data, are discussed in Section 7.5.
A discussion of a priori expectations regarding quality appears in
Secticn 7.4.6.

Even though it is not possible to distinguish between the different
verificaticn methods, it is possible to cbtain a rough estimate of the
ccst nenalty associated with the use cf the Functional approach. Cf
te three Functional data points in Table 7-26, the E-111 data point
is eliminated (ror the reasons discussed in the previous section).
'Ie crojected total number of architectural discreranciEs is taken to
be the average of the B-52 SPN/GEANS and A-7 data pcints (i.e., 28).
Since these two data pcints are for machines which are roughly the
size of the nominal ftIL-STD-1750 machine, and since great precision is
not expected for only twc data points, ncrualizaticn by machine size
(as described in Appendix B) is not performed.

Arplying 28 projected architectural discrepancies to Equation (7-1)
yields:

Eo1lars
- = -154 + (220 * 28)

K Lines of Code

= 8,806

1his cost per K lines of code is then multiplied by the expected
rumber of lines of operational code to he written over the lifetime of
IIl-STD-1750. The Air Force has estimated this to be between 313.2K

and 522K lines of operational code. The expected cost range is:

213.2K lines of code * 8,806 dollars/K lines of code = $2,75E,039

5_22K lines of code * 8,806 dcllars/K lines of code = $4,596,732

Therefore, the expected cost penalty that wculd be paid for having a
less-than-perfect verification method (in this case, the functional
type) is between $2.8 and $4.6 million.

Ftrther analysis can also be applied to the System/370 model data
pcint. Pecall, that this data point is coutaminated in that both the
?andom and Functional approaches were applied. Thereform, one expects
that the resulting quality would be higher than that of the Functional
approach alone.

"lis is shown to be the case after the data is normalized by machine
size. Table 7-23 shows the distributicn of logic-related ECs,
nicrccode-related ECs, and main storage-related ECs. lahle 7-26 shows
that 44 ECs were found and that the projected tctal number of

7-92

E1761751 FINAL REPCFB February 29, 1980

architectural discrepancies is 68. The projected number of
lccic-related architectural discrepancies becomes:

Projected Logic-Related (68/44) * (26 logic-related
Discrepancies ICs found)

= 40

7e corresponding projected number of microcode-related and main
storage-related architectural discrepancies are 22 and 6,
respectively.

Normalizing by machine size (using the data from Table 7-26 and the
rcuinal machine size for MIL-STD-1750), and using the method in
Appendix B, one obtains:

Project Number of 29,894
Architectural =40 * -
Discrepancies 274,000

611,201
1 ,719,296

1,179, E48
6*

8,388,608

13

This number suggests that the improvemerts to be obtained by adding
the Pandcm approach to the Functional approach would Le to decrease
the expected number of architectural discrepancies frcu 28 to 13.

ate application of these results appears in Section 7.5.

7-94

E1116119A FINAL REPC1VI FEhruary 29, 1980

17 7.~4 CCM PABISON

In this section all twelve approaches are compared against the same
five guidelines used to evaluate each apprcach, Non-Recurring Start-Up
Ccsts, Recurring Costs, Time Required to Perform lalidation, and
Tmract to SEAFAC Resources. Tables 7-27 and 7-28 summIarize the data
describEd previously. Note that the total size is the summation of
tre verificaticrn program and whatever other control program-s or test
cases that are developed to support the verification process.

As.9

E176175A FINAL REPCPF 1ekruary 29, 1980

Table 7-27. Corrariscn Summary

--

I Total I Verificatic I Total Cost Over 10
Approach I Size I Time I Years (K Dollars)

N/AYK-15A ATP
Manual 96K 48 min 462.4

Master/Slave I104K 11 min, 617
21 min 2

Random
Manual 162K 86 hrs, 50 min S62.8-

682.8--
Master/Slave 170K 6 hrs, 12 rin' 1133.8-

7 hrs, 15 min 2 853.8--

IAVPI I
Manual 2M 15 hrs, 2 min 1210.4

Master/Slave 2 M 13 min' 13S7.4
22 min2

Iiagnostic
Manual 96F 48 min 73-.4

Master/Slave I104K 12 min' 890.0
22 min2

F7P
Manual 96K 48 min 462.4*

1C85.4**
Master/Slave 104K 10 min, 617.0*

11 min 2 1240.0**

lockstep
Manual 1.1M 7 hrs, 40 min 647.0

Master/Slave 64K+ 17 min1 1650. 1+
1 64K++I 30 min2 124.4+
1 1.1MI SS7.1+

I---
* Mcdify Existing FTP - write New Sirulator
I * Wrice New FTP -- Modify Existing Simulator
I Witb Software Trace
+ With "Golden" Computer
++ with Sirulator
++ With Predetermined Results
I I Based on MIL-STD-1553 Transfer Fate of 30K words/second
2 Based on RS 232 Transfer Pate cf 3K words/seccnd

--

7-96

6176175A FINAL FEPCP1 FEtruary 29, 1980

Table 7-28. Cost Ccmarison

+---

I I I Tctal I
I I Recurring I Recurring I
I I Cost/Com- I Cost Over I lotal Cost Over
I NRSU I puter I 10 Years I 10 Years

I Approach j (K $) I (K Dcllars) I (F Dollars) I (K Dollars)
I ==--

AN/AYK-15A ATP
Vanual 259 6.78 203.4 462.4

Master/Slave 392 7.5 225.0 617.0

Random
Manual 799- 5.46 163.9 962.8-

519-- 682.8--

Master/Slave 952- 6.06 181.8 1133.8-
672-- 853.8--

AVP
Manual 833 12.58 377.4 1210.4

Master/Slave 966 14.38 431.4 1397.4

tiagnostic
Manual 532 6.78 203.4 735.4

Master/Slave 665 7.5 225.0 890.0

FTP
Manual 259* 6.78 203.4 462.4*

II882** 1085.4**

Master/Slave 392* 7.5 225.0 617.0*
I.A1015** 1240.0**

Iockstep
Manual 448 13.30 399.0 847.0

1 476***l 1 875.0***

Master/Slave 1207+ 14.77 443. 1 16E0.1+
943++ 10.08 302.4 1245.4++

I 602+++l 13.17 395.1 I 997.1+++

-- A
NCTES: BEYER TO TABLE 7-27.

--

6176175A FINAL FEPCF7 February 29, 1980

7.14.1 Test Cofigurations

A civen verification approach car eliminate certain Test
Ccnfigurations from consideration. A liviting factor surrounding the
ranual test configuration is the size of the verification program,
because under the manual test configuration, program loading and
starting reguires manual intervention. Therefore, the larger the size
of the verification program, the mcre separate icads it requires. The
fcllcwing verification approaches can be ruled out because of having a
greater than practical amount of manual intervention:

Section Aproach

7.3.1 AVP in a Manual Test Ccnfiguration

7.3.5 Lockstep in a Manual Test Configuration

.3.7 Random Instruction in a Manual Test Configuration

This leaves verificaticn programs developed based on FSP, Diagnostic,
and AN/AYK-15A approaches which are feasible under a manual test
configuration, and which are very similar in design and function. The
najor advantage (to the vendor) of a verificaticn program running
urder a Manual Test Configuration is that it easily allous the vendor
tc "pre-test" the computer before bringing his unit in for
certification (the source code for the verification program will be
rade available to him pricr to certificaticn).

All approaches are feasible to operate under the Master/Slave Test
Ccnfiquration. The disadvantages though is some difficulty (to the
vendor) of "pre-testing" when the vendcr doesn't have the Easter/Slave
ccnfiguration, including the I/O interface.

1.4.2 Ncn-iecurrina Start-Ur Costs

te difference between the lowest Ncn-Pecurring Start-Up cost for
develcping a verification program (AN/AYF-15A or FTP approaches in a
Manual Test Configuration at $259,CCO) ard the mcst exyErsive approach
(Lcckstep in a Master/Slave Envircmert with a "colden" conputer at
$1,207,000) is $948,000. The key issue surrounding the cost of the
F7P approach in a Manual Test Configuration is that the 3.7 man year
figure is based on modifying an existing FTF. Currently, there does
rct exist an FTP for the MIL-STD-1150, but cre will exist in the July,
1S80 time frame. The AN/AYK-15A ATr currently exists with
documentation supporting its design and use.

A second factor to be considered is the line item for Ell-STD-1750
simulators included in the Lockstep and Fandcm Instruction approaches.
If an existing BIL-STD-1750 simulator could be installed and modified

4--.

E176175A FINAL FEPCFI Fetruary 29, 1980

tc run in conjunction with the verificaticr program, then the 6 man
years development figure could be cut to a 2 man year modification
cost.

Certain recurring costs are the same for all approaches. They are the
bcotstrap and control programs for a Master/Slave Test Configuration,
and the source tape generation program (which may be just a system
utility for the Manual Test Configuraticn). The cost cf the Master
ccmputer, and MIL-STD-1750 support software are considered to he zero.

1.4.3 ecu _rj Cost

Recurring costs are directly propcrtioral to the time required to
ccmrlete the verification process. Therefore, frcm Tatle 7-27, it is
readily observable that only one approach distinguishes itself
significantly enough to be ruled unfeasible for implementation. The
Random Instruction in a Manual Test Ccfiguration requires 11 work
days of manual intervention to accumulate the execution of 1,250,000
randomly generated test cases.

71he recurring cost figures are calculated assuming that no errors are
found in the unit under test. If any errcrs are found, this figure
wculd increase proportionally. In all the remaining cases, therefore,
the recurring figures are all within a one week time frame.

Tle second component of recurring cost is the scftware/hardware
aintenance cost associated with each approach. The LccksteF approach

%ith the "golden" computer distinguishes itself as being the only
approach which has hardware maintenance cost. Software maintenance
costs are proportional to the size of the verification program.

7.4.4 Time Required to Perform Validation

T1e time required to perform verification has been defined to be the
time between when the verification program is initially loaded into
the unit under test, and when it successfully completes execution (no
errors found). As can be seen from Table 7-27, only one approach's
execution time is large enough to immediately eliminate it from
frrther consideration, that is the Random Instruction approach in a
lanual Test Configuration. All other approaches fall well within a
ore week test period time frame.

i 7-99

E176175A FIVAI FEPCF1 fetruary 29, 1980

1...r. impact to SEAFAC Resources

71e tasic resources that are common to all approaches and test

ccrfigurations are the fcllowing:

Development Computer

Support Software

- MIL-STD-1750 Cross Assembler

- Linking Lcader

- Simulator

* Development Personnel

• Certification Facility

• Certification Plan Document

* Certification Personnel

0 Source Tape Dump Program

Ile resources which apply to the Master/Slave Test Configuration are:

* Bootstrap Load Program

* Control Program on Master

* I/O Test Program

The Lockstep approach requires the "golden" computer tc be purchased,
verified and maintained which adds appreciable ccst.

7-100

E17617EA FINAL FEPCF! Fehruary 29, 1980

-7. 4.6 ouality i2_ecta.ticns for rifferr~t Vcrificaticn ethols

hile the forecing quality analysis has not resulted in suiiicient
ccnfi~ence to discriminate between the verification methods on the
basis of quality, some judgements can he made about the expected
differences.

First of all, it is likely that there are nct significant differences
in quality between the Functicnal arprcach and the Lcckste approacL.
Each of these relies on manually generatel test cases. Assuming equal
ahility and insight of the recple writing the test cases, there wcul"
be no differences in the quality of the test cases.

7he two approaches do differ in the method of generating the expected
results. In the Functicnal approach they are generated manually and
in the Lcckstep approach they are generated by the "golden" machine.
Since the expected results are the same in bcth cases, there should be
nc impact on quality.

Tle two approaches may also differ in terms of the checking of
architectural entities (e.g., registers, indicators) wrich should
remain unchanged by a test. It is relatively easy for the programmer
using the Lockstep approach to check all the status infcrmation and
all the general registers and all the address recisters for any
undesired changes. To do this, he needs tc keep track of the contents
of these registers. To accomplish the same checks using the
Functional approach requires that the programmer maintain the expected
information. To the degree that the prcgravmer usinG the functional
method does not check all of the architectural entities for lack of
clange, the Lockstep method may cffer a slightly higher quality.
However, the differences would nct be expected to be significant.

However, a comparison between the Random approach and either the
icckstep approach or the Functional approach does reveal an expected
difference in quality. First, consider a siple hycothesis: the
quality of an approach is a function of both the number of test cases
and the "value" of those test cases. 1his appears to agree with
intuition. Each additional test case provides some improvement in the
auality of the verification method (assuming it is not merely a copy
cf a previous test case).

Some test cases may be more valuable than others for improving the
quality of a verification approach. It would be expected that a
collection of one hundred carefully thought-out test cases would be a
better check of a machine than one hundred randomly chosen test cases
(uhich may not, for instance, even check all addressirc modes or even
the ADE instruction). For this reason the Functional type of
verification approach would be expected to be of higher quality than
the Pandom approach for the same number cf test cases.

Tle ccmparison does not end here, hovever, since the number of test
cases must be taken into consideration. Since the test cases for the
Functional type of verification approach rust be generated manually,

7-101

E176175A FINAL FEPCRT Fetruary 29, 1980

tle cost cf generating each additional test case is significant. A

dcublina of the number of test cases would result in a near doubling
cf the cost. For the Random approach, however, in which the test
casEF are automatically generated, the cost cf cenerating each
additional test case is very small. A doubling of the number of test
cases would result in only a small increase in total cct.

The result is that it is not clear which approach would provide the
greater quality test. The answer will clearly he a function of the
duration of tte test. Given the cpportunity to run lcng enough, the
Random test will surpass the Functional test in terms of quality
(since the Functional test is fixed in terms of the number of test
cases). The break-even point in terms of time is not known, however.

.r anecdote regarding the ccmpariscn cf the Functional and Random
approaches may be of interest. Two different machines were developed
by the IBM System Products Divisicn at Fouclkeepsie, 1.Y. The first
machine was developed using a Functional type of test. A Random type
test was then apFlied, and some additional architectural discrepancies
were discovered. The second machine was developed using the Eandom
type of test. A Functional test was then applied, and no additional
architectural discrepancies were found. This suggests that the Random
test is of higher quality.

7-102

E176179A FINAL .EPCF7 Fetruary 29, 1980

7.C TN11T .RETATION 0? CCS! MCDEL RESUJTS

Since the quality analysis was unable tc provide a credible cos.t
renalty figure (due to less-than-perfect cuality) fcr each oi tne
verification approaches, these costs cannot be considered in the cost
model. This does not, however, reduce either the reality or the
significance of these costs. Neither is the quality analysis
ccmrleted invalidated.

Icnoring, for the moment, the cost 7enalty of having a less than
rerfect verizication apzroach, one is left with the concLusion that
the lowest cost verification method (as shcwn in Table 7-28) is the
test one. This is simply because there is no firm data to
differentiate between the methcds in terms cf quality. Ihe
modification of the AN/AYK-15A Acceptance lest Procedure (ATP) is the
lowest cost and, therefore, the best method (in the absence of quality
considerations). The previous comments about the availability of an
E'_P eliminate the FTP approach, which has the same cost of
modification of tne AN/NYK-15A ATP approach.

'N e quality analysis does provide valuable insight into the cost
renalties associated with this method, hcuever.

Z-e AN/A7K-15A ATP is of the Functional Seneric type, as discussed
previously. As described in Section 7.2.2.1- sufficient data do exist
to provide a rough cost estimate (due to less than perfect quality) of
the Functicnal type of verificatior method.

Tle results of that section indicate that the expected cost penalty
that would be paid for having a less-than-perfect verification method
(in this case, the Functional type) is between $2.8 and $4.6 million.

This is a significant cost. Obviously, if it were possible to
sagnificantly improve the quality of the overall test at a cost
significantly less than the $2.8 to $4.E willion range, this would be
very desirable. The data gathered strcngly suggest that the Random
approach to architectural verificaticn is the best method of
augmenting the quality of the AN/AYK-1_A ATP approach.

Three reasons apply. First, the Random approach provides an extremely
large number of test cases, many times the number of test cases of the
AN/AYK-15A ATP approach. Each new test case provides a positive
increment to the overall quality.

Second, the test cases generated under the Pandcm approach are
expected to be independent of (i.e., not related to) the test cases
used in the AN/AYK-15A AIP approach. Thjis is simply because in the
Fandcm approach they are generated randomly and in the AN/AYK-15A ATP
approach they are generated manually. The other verification methods
examined in this study also have manually generated cest cases. They
woculd, therefore, be expected to be less independent. This
irdependence is required in order to obtain improvements in quality.

7-102

EI?6175A FIVAL FEPCP7 Tetruary 29, 1980

Third, the Random approach provides, by far, the largest number of
test cases per dollar expendee.

'The two methods added together should, therefore, imprcve the total
quality. The anecdote in the previous section izFlies that the Random
approach offers a higher quality. furthermore, testing at SEAFAC
should permit a Random test of long duration, since overnight and
weekend testing is possible. About 28.8 rillicn test cases should be
pcssitle in a week long verification test.

The cost of implementing the Random certification method, as shown in
7able 7-28, is well below the $2.8 to $4.6 million range discussed
above. If the overall quality of the test were improved by 22 percent
by the addition of the Random approach, then the reduction of the cost
penalty by $622,000 = ($1,239,000 - E17,COO) (22 percent of $2.8
aillion) would offset the cost of implementing the Fandcr verification
method. It seems reasonable to expect that the addition of 28.8
illion test cases to the approximately five thousand test cases in

the AN/AYK-15A ATP method would result in a quality improverent of 22
percent. ($1,239,000 is the total cost for the IELE recommendatio.
which will be discussed later.) While the data gathered in this study
cannot definitively prove it to be the case, it appears that
investment in the comhination Functional/Fandom approach will he
easily recovered.

As was mentioned previously, caution must be used when drawing
ccnclusions based on the $2.8 million to $4.6 millior cost penalty.
Rowever, there is good reason to believe that any errcrs will be on
tle side of conservatism. This is because the actual cost penalty to
the Air force is likely to be substantially higher than the $2.8
million stated. If this is the case, then the justification for
aeding the Randca approach is further reinforced.

Ccnsid4?r again tne quality analysis. 1The cost penalties measured were
for th(: correction of architectural discrepancies discovered during
C~erat:.onal flight Program validation. The costs here are limited by
the fact that, since this is still in the development phase, changes
crly nEed to be made to the develcpmert hardware cr software, not to
many nachines in the field. Put, just as some architectural
discrerancies escape detection during architecture verification, some
architc' ural discrepancies will escape detection during software
validation. Experience shows that, even after years of operational
use, additicnal architectural discrepancies can be]iscovered. Tnis
could h for aany reascns; previcusly tntried aata ccchinaticos are
certainly one possible cause.

Correction of architectural discrepancies which are discovered after
operational use of the hardware and software has begun can cost
severUl order of magnitude more than correction cf those same
architectural discrepancies caught during the development phase of a
rrcgram. Ihis is simply due to the tremendous logistics involved in
chancing many computers which are in the field. Experience shows that
tlese costs could easily overshadow the $2.8 to $4.6 uillion estimate
7ade above. Thi further emphasizes the value of improving the

7-104

MIL-STD-1750 CERTIFICATION STUDY. CU)

MCFEB 80 M L KUSHNER, D C REISIER, W J TRACZ F33657-79-M-0SSB

UNCLASSIFID IBM-6i76175A NL

INDJ IIIIIIImE
IIIIIIII

6176175A FINAL PEPCFT Fetruary 29, 1980

quality of the verification test to reduce the large cost penalties
%lich result from havirg -, -then-perfect verificatior.

Naturally, the questio, be asked: If the Bandom approach is of
higher quality, why not eliminate the Functicnal approach? The answer
is twc-fold. First, the combination of the approaches provides an
even higher quality. Second, and perhars the more iiportant to the
Air Force, the Functional approach provides a certain minimum test of
the machine. The Random approach, while providing perhaps a higher
decree of quality of test, cannot provide any mirimum degree of
testing. For example, it is theoretically possible that, after a
nillicn test cases, that the ADD instruction would remain untested.
While this is highly unlikely, the ahility tc provide a specific level
of testing must be of considerable importance to the Air Force.

Ancther question may be asked as tc why this combination
Functional/Random approach has not been applied tc aiicnics machines
in the past. The answer is based on sirple econcmics: for single
arplications of a computer architecture, the test investment must be
recovered in that single application; multiple use architectures like
MIL-STD-1750 can recover the test investment over those multiple
applications. Effectively, there are economies of scale in applying
the test over and over again.

The quality analysis in this report provides some benefits to the Air
Force in addition to helping select the test verification approach.
It should assist the Air Force in develcping realistic expectations
regarding the certification process and the use of MIL-STD-1750
machines. The collected data show that the verification method will
not be perfect. Machines will be certified that have hidden
architectural discrepancies. Previously validated software will not
always execute correctly cn newly certified machines.

Fcr the users of 8IL-STD-1750 machines, it provides a conceptual
framework for the error discovery prccess during Operational Flight
Program validation. Understanding of these results shculd permit more
accurate budgeting and scheduling for programs that use MIL-STD-1750
computers.

In summary, the cost model has provided valuable data for
discriminating between the different verification approaches. The
quality analysis, while unable to provide high confidence in the
specific dollar penalties to be assessed each verification approach,
has provided an estimate of the penalty tc be paid for the use of a
single verification test (in this case Functional) approach. This
information, combined with the cost data, provide the basis for the
recommendation of a combined Functional/Eandom approach.

This recommendation will be discussed in detail in the followiDg
section.

7-105

- s< ;'

E116115A FIVAL BEPOET fetruary 29, 1980

THIS PAGE IRTENTICEALIY LIFT BLANK

7- 106

_ _ _ _ _ _ _ _ _ _ _ _ _ _ C -

6176175A FINAL REPCT Fetruary 29, 1980

8.0 R7CC_.MIIDAT 04

This section contains IBM's recommendation to the Air force for
implementing the 8IL-STD-1750 certificaticn capability in SEAFAC. It
consists of a description of the apprcach, and the rationale leading
tc its selection. A summary of the resources required is also
covered. As a conclusion, an outline for tke MIL-STD-1750
Certification Test Plan which describes the chain of events leading up
tc vendor certification is presented.

F.1 TWO LEVEL APPROACH

a.1.1 DescriPtio

IEM recommends a two phase approach to certificaticn as follows:

Phase 1 A deterministic verification approach based on
modifications to the ft/AYK-15A ATP is run on the
MIL-STD-1750 computer being tested. (These
modifications delete the non-MIL-S7Ir-1750 features
from this ATP.) This provides a predefined
minimum test of the machine using 5,000 test
cases. This first phase tests the integrity of
each MIL-STD-1750 instruction for selected data
patterns and addressing modes as described in the
Military Standard Airbcrne Ccmputer Instruction
Set Architecture document and tests the boundary
problem areas in the MIL-STD-1750 architecture.

Phase 2 After completion of Phase 1, a Randcm verification
approach is used to generate large numbers of test
cases. The second phase of testirg verifies that
large number of instruction sequences execute
according to their intended functicn. A test case
contains an instruction which is first run on a
HIL-STD-1750 simulator and ther run on the
AIL-STD-1750 computer being tested. The simulatcr
results are ccmpared with the results from the
HIL-STD-1750 computer being tested. 28,800,000
test cases should be possible during a week long
verification test.

Both phases of testing would be conducted under a Master/Slave Test
Configuration. The MIL-STD-S5 3 Serial Channel I/C interface is
rscommended as being the standard to which each vendor should target
his certification configuration; but a multiple interface capability
is recommended -- MIL-STD-1553 or PS-232. Ramifications of using a

8-1

E1761751 FINAL REPCUT February 29, 1980

BE-232 Serial Channel I/O interface are identified in Section 7.

Tlis provides a superior means to accomplish the certification process
because:

1. The 2-phase process (with Random as the second phase)
provides a higher quality than any single verification
approach.

2. The 2-phase process provides a minimum testing level.

The recommended approach for arriving at a verification program that
fulfills the requirements of the first phase cf testing, is
accomplished by the modification of the AN/AYK-15A ATP. The
reccmmended approach for arriving at a verificatior program that
satisfies the requirements of the second phase of tcsting is the
development of a Randcm Instruction Generatcr Prcgram, and the
u cdification of the existing MIL-STD-1750 simulator tc interface with
a contrcl program that compares the results.

The verification testing can be achieved in less that two weeks of
tire.

e.1.2 Bationale

The rationale for selection of a two level approach tc architectural
verification was discussed in detail in Section 7. This rationale is
surmarized here.

The cost model shows that the lowest cost afproach is the modification
cf the existing AN/AYK-15A Acceptance Test Program. This method,
t1en, constitutes the first level of verification for MIL-STD-1750
machines.

The quality analysis shows that use of this single mettod results in a
cost penalty to the Air Force of between 12.8 and $4.E million. Shis
Denalty is the additional software validation costs that is incurred
over the lifetime of MIL-STD-1750 because of the less-than-perfect
quality of the AN/AYK-15& ATP. The magnitude cf this ccst suggests
that use of an additional method of verification testing to improve
the overall quality could substantially reduce the overall cost and at
the same time provide SEAF&C with a better test.

The data gathered strcngly suggest that the Fandcv approach to
architectural verification is the best method of augmenting the
quality of the AN/AYK-15A ATP. Three reasons apply. First, the
Pandca approach provides an extremely large rumber of test cases, many
tires the number of test cases of the AW/AYK-15A ATP. Each new test
case provides a positive increment to the overall quality.

8-2

6176175A FIVAL EEPCEI Fetruary 29, 1980

Second, the test cases generated under the Fandca approach are
expected to be independent of (i.e., net related to) the test cases
used in the AN/AYK-15A ATP. This is simply because in the Random
approach they are generated randomly and in the AW/AYK-15A ATP
approach they are generated manually. The other verification methods
examined in this study also have manually generated test cases. They
would, therefore, be expected to te less independent. This
independence is required in order to obtain improvements in quality.

Third, the Random approach provides, by far, the largest number of
test cases per dollar. It is reascnable tc expect that the additional
cost cf the Randcm approach ($622,000) is offset by a reduction in the
cost Denalty due to the improvement in quality. This requires an
improvement in quality of 22 percent. It seems reascrable to expect
that increasing the number of test cases from 5,000 to 28,800,000
would provide, at least, a 22 percent improvement in quality, although
tlere is no firm data to support this.

Cemments about the two level approach with regards tc the evaluation
criteria follow.

I QUAIITY

The two level approach affords a higher degree cf quality than any
single approach. The two levels are complementary in that tne
AN/AYK-15A ATP approach provides a predetermined minimum test of all
instructions (but not a large number of test cases) and the Random
approach provides a large number of test cases (but does not provide
any certainty for testing all instructions).

The test cases from Random are expected to be independent from the
test cases generated by the ATP. That is simply because in Random
they are generated randomly and in the AN/AYK-151 ATP they are
generated manually. This independence is required for an improvement
ir quality.

The quality of the certification approach can be increased by allowing
tte Random instruction verification program to run for lcnger periods
of time. Under the Master/Slave Test Configuration, the Random
instruction verification program can be left to run unattended during
off hours (on second and third shifts or over the weekend).

The Won-Recurring Start-Up cost for irplementaticn of the IBM
recommendation within a year and a half is $933,000; the Recurring
cost for 30 computers over 10 years is 1.06,000; the total cost is
thus $1,239,000 for the implementation of the reccomendation.

The AN/AYK-15A ATP approach was shown by the cost acdel to be the
lowest cost approach. Addition of the Random approach will increase
the cost to SEAFAC, but should result in ar overall ccst reduction to
the Air Force because of the increase in quality.

8-3

6176175A FINAL REPCRE Yetruary 29, 1980

TEST CONFIGURATICN

lbe haster/Slave Test Configuration is reccmmended. The Master/Slave
lest Configuration provides tle only feasitle environmert in which the
Random Instruction Verification apprcach exists. However, the
AV/AYK-15A ATP approach runs under either a Manual or Master/Slave
lest Configuration.

VENDOR IMPACT

The AN/AYK-15A hTP approach will yield a verificaticn program of which
each vendor could utilize portions to pretest his MIL-STD-1750 prior
to certification provided that the scurce program be made available to
tle vendor. This availability will decrease the likelihood of finding
"first order" errors in the unit under test. Additionally, the Random
v.rification approach's Generator Program and Simulatcr Program could
also be used by the vendor to further pretest his MIL-STD-1750
ccmputer prior to the certification process in order to increase
confidence in passing the certificaticn process.

IMPACT TO S2EAAC

SATAC's VAX 11/780 can be used as the Master computer for the
certification process. Support software would be available on it for
develcpmental and maintenance activities. SEAFAC personnel (an
okserver, a technician and a coordinator) is needed during the
certification process. One programmer is needed tc sustain the
Acceptance Test Program and the Randc yrcgrams; also, five software
programmers are required to develop the Fandom program (within one
year) unless this is subcontracted outside of SEAFAC. If the major
software components resident on the Master Computer (Simulator, Random
Instruction Generator) are written in ar ECL, the verdor is able to
irstall them on a computer system other than the VAY 117/80, thus
facilitatlg pretesting at the vendor's facility.

IERIFTIC11 IMS -71ME

Ile certification process takes less than two weeks for a 500 KOP
computer usng a MIL-STt-1553 channel tc a VAX 11/780. (It takes 7
full days; but two weeks should be allocated for the certification
Frocess.) If a 150 FOP computer (not a 500 KOF computer) is
submitted, the time for certification exyards less than 10 percent
(frcw 7 to 7.7 days), but rerains less than two weeks. If a 500 KOP
ccmvuter is submitted with an RE-232 interface, the time for the
certification process expands 17 percent (frcm 7 full days to 8.2 full
days) if concurrent overlapped CPU and I/C processing is not permitted
in the VAX 11/780; but remains less than two weeks. If concurrent
overlapped CPU and I/O processing is permitted, the CPU processing
still dominates and completed hides the I/0 transfer. In this case,
tle FS-232 channel would have nc discernable impact to the time
required for the certification process.

8-4

E176175A FINAL REPCET February ;9, 1980

IS7 1/o INTEACE

With the MIL-STD-1553 Serial Channel interface planred for the VAX
11/780, it should be used in the Master computer rcle during the
ccnduction of the certification process to connect tc the computer
being tested. (Since the MIL-STD-1750 Serial I/O Channel already
exists on the PDP 11/55, the PDP 11/55 cculd bridge the time until the
VAX 11/780 system with its MIL-STD-1553 I/O channel is available.)
Ihe MIL-STD-1553 Serial Channel requirement is considered to have the
least impact on the vendor's hardware ccnfiguraticn since it is
exrected that from 90 to 95 percent of of the ccmputers being
submitted for certification will contain a MIL-STt-1553 channel.
Fcwever, an RS-232 serial channel is also recommended for those
ccmputers without the MIL-STD-1553 channel.

Parenthetically, any parallel channel vith a transfer rate of
approximately 1 mega words per second is rejected because it speeds up
verification about 2 percent frcm 7 tc 6.87 days and is not a
significant improvement. That is, the verification process is not I/O
bound, but is CPU bound by the VAX 11/780.

8-5

-- _ -- - - = _ = I . _" .' : . .. " , .' ,4i .

E17617'7A FINAL REPORT Fetruary 29, 1980

E.2 IMPLENINTATION CONSIDERATIONS

Ile following section outlines the major items surrounding the
irplementation of the twc level certificaticn process.

E.2.1 Phase I - AN/AYK-ISA ATP Modification

This Acceptance Test Plan (ATP) for the AR/AYK-15A ccnsists of the

fcllcwing subtests:

a User's Console

* Instruction Set

* Register

* Hain Storage

a Bus Controller

* Input/Output

0 Power ON/OFF Sequencing

An AIP resident on the AV/AYK-15A is executed according to procedures
described in Air Force document, PA 401 207, in which a user interacts
vith the console keyboard. Each subtest may reguire a separate
processor load. A standalone test is one in which only the processor
ard an attached console (keyboard and CPT display) are required in
crder to run the ATP. The Pus Ccntrcller Test is nct a standalone
test in that it reguires a configuration which includes the processor
under test and at least one other Master/Femote device interfaced via
a multiplex bus. Also, various tests recuire use of external test
eguiprent (e.g., logic analyzers, oscilloscopes, etc.) and/or special
purpose Input/Output exercisers.

In order to develop a verification program tc fulfill the reguirements
cf tie first phase of testing, modifications to bcth the control
ricgram and subtests of the AN/AYK-15A Acceptance lest Plan are
necessary. These modifications are summari~ed in Table 8-1.

8-6

..A - . . .& -,-

E176175A FINAL PEPCBI Fekruary 29, 1980

Table 8-1. MIL-STD-1750 Applicability of ATP Suttests

+---

I AN/AYK-15A I I MIL-S I-1750
I Subtest Purpose A Applicability

jKeyboard/CRT ITest all keyboard/CPT I Deleted for MIL-STD-1750
Ikeystrokes. I Verification
IPrint all keystrokes cn I
ICRT (keyboard and CPT in I

I ILocal mode). I
I--I
tUser Command IVerify correct execution I Deleted fcr MIL-STD-1750

lof all user ccmmands. I Verification
lExercise all defined I
juser commands. I

--
IFloppy Disc/ IVerify proper operation; I Deleted for MIL-STD-1750
I Printer Irespcnse to user I Verificaticn
I Icommands. I

I"Wrap" processor main I
Istorage frcm flcppy disk I
Ito printer via user I

I Icommands. I
I--
lEasic InstructionjTest Basic Instructicr Modify for MIL-STD-1750
I(done for each lOperation. Verification as
I instruction) lExercise Instruction withl necessary

I known input parameters I I
land compare with expectedI

I iresults. I
I --
IArittuetic ITest all arithmetic I Modify for MIL-STD-1750
lInstruction Test jinstructions and status. I Verification as

IExercise all arithmetic necessary
Iinstructions using
lIselected values in the 4
lquadrants; check condi-
Ition status setting.

I--I
ICondition Status iVerify setting of the I Modify fcr MIL-SID-1750
I(done for each Istatus word for each I Verification as
I application) linstruction. I necessary
I ICause result of exercised
I linstruction to set all I
I Irequired ccmbinations of I
I istatus bits. I

--

8-7

VFW 9.

6176175A FINAL FEPC?7 Fetruary 29, 1980

Table 8-1. MIL-STD-1750 Applicability of ATP Subtests (cont)

4---

I AN/AYK-15A I I MII-STD-1750
I Subtest I Purpose I Applicability

lIndexed ITest those instructions I Modify for HIL-STD-1750
IAddressing jusing index capability. I Verification as
(done for each 1Use 15 index registers; I necessary I

I applicable Ipositive and negative I
instruction) jindexing. I I

--
ICverflow/ ITest those instructions I Modify for HIL-STD-1750 I
Itnderflow lwhich cause underflow/ Verification as I
I(done for each loverflow; verify under- necessary I
I instruction) Iflow/overflow interrupts. I
I jInduce underflow/overflowl

Iresultant. I
-- I
I encbmark [Measure processor I Deleted for MIL-STD-1750

I throughput. I Verification
jUse benchmark arithmetic
land logic instructions
Imixes and measure averagel
Iprocessor throughput. I

I--
Slang Test lCheck for illegal I Deleted for MIL-STD-1750

Isequences of Verification
linstructions. I
jUse random sequence of I
linstructions and test I
Ifor invalid indicators. I

I--I
lillegal ICheck fault register I Modify fcr MIL-STD-1750
Instruction Isetting, machine error I Verification as
I jinterrupt, clear fault I necessary
I Iregister output command. I
I I Execute illegal instruc- I
I Ition and test for

lexpected response.
I--
IGeneral Register ITestatility to address I Modify for MIL-STD-1750

land set/reset all 16 I Verification as
Igeneral registers. I necessary
I Wrap known patterns frou I

I Iprocessor main storage. I
+---

8-8

E176175A FINAL REPCRT Fetruary 29, 1980

Table 8-1. IL-STD-1750 Applicability of ATP Subtests (cont)

+---
AN/AYK-15A I MIL-STD-1750
Subtest I Purpose I Applicability

IECM Control ITestability to address I Deleted for MIL-STD-1750
lFegisters land set/reset all 16 ECM I Verification

lcontrcl registers; verify!
land reset the test bit,
lcompare register and
Istore register input ard
Ioutput commands. I

I IWrap known data patterns I
I Ifrom the processor
I igeneral registers via I
I linput and output
I linstructions. I
I--
IECM General ITestability to address I Deleted for MIL-STD-1750
IRegisters land set/reset all 16 ECM I Verification

lgeneral registers. I
IWrap kncwn data patterns
Ifrom the processor
Igeneral registers via
linput and output

I linstructions.
I--
IStatus Register ITestability to set/reset I Modify fcr MIL-STD-1750

Ithe status register. I Verificaticn as
lWrap known data patterns I necessary
Ifrom general registers I
Ivia input/output I

I I instructions.

lInstruction ITestability to sequence I Modify fcr MIL-STD-1750
lCounter linstructicn counter I Verification as

Ithrough 64K main storage. necessary
lIncrement counter and I
Iverify execution cf everyl
lincrement instruction. I

I--
lInterrupt Mask ITestability to set/reset I Modify fcr MIL-STD-1750

linterrupt mask register. I Verification as
lWrap known data patterns I necessary
Ifrom general registers I
[via input/output I
linstructicns. I

--

8-9

6116115A FINAL BEPCPF Fetruary 29, 1980

Table 8-1. MIL-STD-1750 Applicabilitv of ATP SubtestS (cont)

+---

SqN/AYK-15A I MIL-SIL-1750
Subtest I Purpose I Applicability

l'rite Protect 4Testability to set/reset Modify fcr Mi--STD-1750
IFAM Iwrite protect RAN. Verification as
I IWrap known data patterns necessary

Ifrom general registers
Ivia input/output
Ilinstructions. I

I---
IMain Storage IT-stability to address, I Modify fcr MIL-S[D-1750
lIntegrity IwLite and read 64K Verification as

Imain storage. necessary
IWrap known worst case
Idata patterns frc
I general register (1's, I
10's, and addresses). I

I--
Irrocessor CPU ITestability to protect I Modify for MIL-STD-1750
[rite Protect main storage in I Verificaticn as

Iincrements of 1K blocks. I necessary
ITest main storage I
Iprotect enable output

I Icommand; test fault I
Iregister setting. I
IStore data into protectedI
Iareas and compare fcr
lexpected results.

I--
Iread Only ITest FCM integrity; test I Modify fct tIL-STD-1750
I emory (RCM) jenable and disable outputl Verification as

Icommand discretes. I necessary
IPerform cyclic checksum I Optional in MIL-STD-1750
Iwithin PON memory using I
IROM enable/disatle cutputl
linstructions. I

--
111lecal Main IVerify setting of fault I Modify fcr MIL-STD-1750
IStorage Address Iregister indicator. I Verification as
I IRemove main storage I necessary
I Imodule and attempt to I
I Iread/urite vacant I
I Ilocations. I
I--I
IMain Stcrage ITest for main storage I Deleted for MIL-STD-1750
lAccess laccess and cycle time. I Verification

lInstrument main storage I
Icontrcller and measure I
laccess and cycle times. I

-- +

8-10

E176175k FINAL REPCM1 February 29, 1980

Table 8-1. SIL-STD-1750 Applicability cf ATP Subtests (ccnt)

--
AN/AYK-15A I I MIL-STE-1750

I Subtest I Purpose I Applicability

IHain Storage IVerify priority of Eus I Deleted for MIL-STD-1750
IAccess Priority jContrcl Module (BCM), I Verification

IDirect Memory Access I
I (DMA) and CPU access to I
Imain storage. I
lInitiate simultaneous I I
Imain storage requests andi

I linstrument main storage I
I Icontroller. I
I --
IECM Internal ITest ROOP, LINK and HiLT I Deleted for MIL-STD-1750
ICommands IBCM instructions; BCI I Verification

ILevel 1 interrupt. I
I lExercise instructions in

Ipredefined order (stand-
jalone only).

--
JECM Self-Test ITest capability cf ECM I Deleted for MIL-STD-1750

land MTU to wrap self-test Verification
lpattern, test bus I
lactivity discretes.
lExercise BCM self-test
Ifunction (standalone
lonly).

IUndefined Mode ITest Master/Remcte I Deleted for MIL-STD-1750
ICcmmands Iresponse to undefined I Verification
I lmode commands; ECI

ILevel 2 interrupt.
lExercise predetermined
Imode command message
Isequence (requires Masterl
land Remote). I

I.TU Shutdcwn ITest Master/Remote I Deleted fcr MIL-STD-1750
IMode Commands Iresponse to MTU shutdown I Verification
I Imode commands. I

IExercise predetermined I
Imode command message I

I Isequence (requires haster
I land Remote). I
+---

8-11

. ... III IirW-7

6176175A FINAL FEPCF1 Fetruary 29, 1980

Table 8-1. MIL-STD-1750 Applicability cf ATP Subtests (cont)

IA/AY!-15A I I MIL-STL-1750
I Subtest I Purpose I Applicability
I- = = = == = = = = == = = == --= --- I

I ode Commands ITest Master/Remcte I Deleted for MIIL-STD-1750
[with Interrupts Iresponse to those mode I Verification

Icommands which generate I

I Iremote interrupt. I
I lExercise predetermined I
I Imode command message I
I Isequences (requires I

Imaster and remote). I I
I -- --- I

SSyncbronous Data ITest Master/Pemote data I Deleted for MIL-STD-1750
ransfers addressing, tag word Verification

storage, data storage. I
Exercise predetermined
Imessage sequences, I
Irotating word count and I
Isubaddress. I

I ---
IAsynchronous DatalTest Master/Pemote ASYNC I Deleted for MIL-STD-1750
Iransfers Idata addressing, ASYWC I Verification
I Imessage protocol.
I IExercise predetermined I
I Imessage sequences, I

Irotating word count and I
Isubaddress. I

---I
Ilimer ITest capability tc load, I Modify for MIL-SID-1750
I Istart and stop timers A I Verification as
I land B. Test capatility I necessary

Ito input timers A and B. I
I ITest timer A and P I
I linterrupts.
IOutput various timer I
I Ivalues and test using I
I cknown instruction I
I jexecution times. I
I ---
lExternal ITest capahility to set, I Modify fcr MIL-SD-1750
iriscretes Ireset and read e output/ I Verification as

linput discretes; !rest necessary
IRead Discrete Output and
linput/cutput buffer input
Icommands.
IWrap discrete output to
linput, output fixed data
Ipatterns and compare.

4--

8-12]

2 -- 4 : 'l i

E176175A FINAL REPCWI February 29, 1980

Table 8-1. MIL-STD-1750 Applicability cf ATP Subtests (cont)

-- ---------------

IAN/AYK-15A I lIL-S'ID-1 750
ISubtest IPurpose IApplicability

S--- ---- ---- ---- ----------------

IFIC ITest capability to I Modify fcr NIL-5Sfl-175O
lexecute PIC. IVerification asI

I II necessary
lOutput to PIC and ccmparel Optional in hIL-STVD-1750I
Ito output buffer read; I
juse external test hard- I
Iware to provide external I

I 1rap. I
I ------------------------------ M--------------------M--------- M---------
lnterrupts ITest capability to I Modify fcr IUL-STD-1750 I
I Irespond tc 6 external I Verificaticn asI
I linterrupts, test the I necessary

IIclear, disable, enable, I
I land clear pending I

I interrupts output I
lcommands. I

I Ese external test hard- I optional in t1L-STD-1750I
Iware to initiate I
l interrupts. I

I--- -----------------------I
IrMA ITest E!NA interface and I Mlodify fcr IMIL-STD-175O
I lenable/disable rmA outputl Verification as
I icommands. T!est D!HA writel necessary

I protect and the fault I
I Iregister indicator Bit 1.1

I lUse external test hard- I
I Iware to initiate V1MA I
I Iread/vrite. I
I --I
I~riccer GO ITest for output discrete I M1odify for MIL-SID-1750 I
lindicator land 40 ms timeout. IVerificaticn as

I lUse oscilloscope to Inecessary
IImeasure timeout. I

-------------------------- ------------------ ------------- -------
lillecal ICheck fault register I Modify for MIL-STD-1750 I

IIsetting. I Verification as
IlExecute illegal output I necessary
I command and test for I
Ilexpected results. I

+-- --------------------------- -------------------------

8-13

E176115A FIWAL PEPC'I Yekruary 29, 1980

Table 8-1. MIL-STD-1750 Applicability of ATP Subtests (coDt)

+--

AN/AYK-15A I I MIL-SIL-1750
Subtest I Purpose I Applicability

iPower Off IVerify power-down inter- Modify for MIL-STD-1750
lrupt; 100 microsecond Verificaticn as
}hold time. necessary
Ilnitiate power down; I
lexecute consecutive I I
Imemory stored after pcwezl
Ion. I

I--
I ower On IVerify power-on discrete;I Modify for BIL-STD-1750

lexecution frcm boctstrap Verification as
IROM; power-on reset necessary
Idiscrete, power-cn BCE Optional in MIL-STD-1750
Sguiescent state.
llnitiate power-cn;
lexecute from BCM to read/I
Ireset power-on discrete; I
Iverify BCM state by read-I
ling control registers. I

--- 4

2.2.2 Phase 2 - Random Instruction Generator Development

lc complete the second phase cf testirg, a Bandcz Instruction
Generator Program, and related contrcl programs must bE developed, and
the existing MIL-STD-1750 simulator modified. The follcwing is a list
of characteristics of this approach:

1. The Random Instruction Generator must be designed to accept,
as user input, a seed, from vhich the randcm sequence of
instructions and data can be generated.

2. The MIL-STD-1750 simulator must be modified to facilitate
the inspection and modificaticn cf all registers and core
locations as well as start and stop contrcl. It must be
hosted on the VAX 11/780.

3. The following describes this Randcm process.

8-14

E176175A FINAL FEPCRT Fekruary 29, 1980

E.2.2.1 2andom Program rescription

It is possible to split the cverall pxcgram into separate structures
cr routines. This is done in order to develop detailed operations
tased upon individual module function. The structure is depicted
(figure 8-1) with names associated vith individual functions. This
reflects the overall concept cnly, since further detailing obviously
requires a further refinement of the functicrs.

S Main

ci r ll conept: eert
o

simula ilad exeuton o teuttases

use byFtgereinder ofthe t e roram.

... 1 The BUILDesroptine cnree ene oto codu e pool brief

1 h. c OPIN coDESt reoako the p seuo-rado yln; tegntruction,

stream.

8-15

A" 7-____________

E1761751 INAL SEPCM February 29, 1980

4. The "GENERATE" subroutine builds the instruction stream by
randomly selecting an OP CODE and then building the operands
for each instruction.

5. The "TEST" subroutine ccntrols test case simulation and
execution until an error is detected or the end of the
instruction stream is encountered.

6. The "SINULATOR" subroutine simulates each instruction found
within the pseudo-randcm instruction stream.

7. The "EXECUTE" subroutine causes the execution of the
instruction stream by the prccessor.

8. The "CCMPARE" subroutine ccmpares the expected results from
the Simulator subroutine with the actual results from the
Execute subroutine to determine if an error has been
generated.

S. The "OUTPUT" subroutine produces all hardcopy resulting from
test piogram execution.

e.2.2.1.2 "nzjj" Louti.t. The "Main" routine is the topmost module
in tte series which ccprises the Pandcm Instruction Test Program.
Its function is to control the executicr of the program. The
following operations take place within this routine.

* A Program Control Area (PCA) provides the area for parameter
input from the operator and ether system surflied values.

0 Restart is checked ty a test of the restart bit in tbe PCA.
If restart has occurred, control is passed tc Cutput routine
to provide tie cperatcr with restart information.

" The machine architecture is determined ty testing the
appropriate field in the PeA. Cnce the architecture is
determined, the instructicn table for that architecture is
brought into the system, if not currently lcaded as in the
case of restarts.

* A storage area is maintained for module communications.
Tils communications ccrtrcl tlock contains Fointers,
structures, and flags for usage by other modules.

" An initial machine state is established.

" The "MAIN" program loops, generating test cases until an
operator initiated stop is encountered.

Contrcl is passed in the following sequence to subroutines which make
up the "MAIN" program loop.

8-16

A&-0

6176175A FINAL PIPCET FEtruary 29, 1980

a The "PARAMETEPS" routine: Provides parameter values for the
remainder of the test program.

0 The "BUILD" routine: Generates an OP CODE Fcol for use in
instruction stream generation.

The "GENERATE" routine: Generates a pseudo-random
instruction stream.

The "TEST" routine: This routine causes all the testing by
passing control to:

- The "SI JULATCE" routine: Simulates the instruction
stream.

- The "EXECUTE" routine: Executes the instruction
stream.

- The "CCMERRE" routine: Determines if an error has
occurred.

- The "OUTPUT" routine: Ercvides hardcopy output.

E.2.2.1.3 "PAR. ETRS" Foutine. Parameters, after being validity
clecked by the parameter processor of the "MAIN" program, become
available to the "aAIN" program when a request is made tor operator
input. The function of this routine is to provide parameter values
for use by the remainder of the "MIAIN" prcgram. Those values may be a
randcoized selection of the operator input or a randcized selection
of the available options. Operatcr input is ierified and a
randomizing of values is performed for each pass through the "MAIN"
program. The operation of this routine follcws:

A base seed for random generation of data is requested.
Note that loading this base seed permits a ccmputer that has
previously failed certificaticr to be retested using the
same psuedo-random test sequence.

* A check is made to determine if operator input is available.

If input is supplied, the buffers size parameter (which is
used to track storage allccaticn and usage) is checked for
values within spt< fied ranges.

If not in range, a request is reissued with a message
indicating the operator error.

• If buffer size differs from its previous value, then storage
is released and the new storage size is used.

9 * OP and HOP parameters which ccntrol execution are checked
for valid OP CODES, and if the same OP CCDE is found in bothg parameters, the NOP parameter overrides the CP value. The

8-17

E176175A FINRL FEPCF February 29, 1980

OP and NOP parameters are used to define which of the
instructions have been implemented in the computer under
test.

e.2.2.1.4 "BUILD" Routine. The function of this routine is to
yrovide a table of valid OP CODES for use by the remainder of the
program. By generating a separate table, in lieu of the architecture
table, there is a reduction in the amount of time spent in
verification of OP CODES found in the random instructicm stream. This
CE CODE pool is formulated in the fcllcwing manner.

" On entry to the routine, pointers are available to the OP
parameter OP CODES, NOP parameter CP CODES, tie architecture
table, and to the storage area which cbntains the OP CODE
pool.

* Depending on the contents of the OP or NOP parameters, all
OP CODES for the randomly selected machine features are
processed.

* If OP is specified, only those CP CODES are transferred to
the OP CODE Focl.

* If 1OP is specified, all OF CCDIS with tie exception of
those specified are transferred tc the OP COY pool.

* This routine loops until all Cr CODES are processed.

E.2.2.1.5 "GENERTE" Routine. The Generate routine is responsible
for providing a random instruction stream vith the appropriate values
established in the corresponding contrcl registers, general purpose
recisters, floating point registers and data areas. In order that the
test program is able to distinguish between processor execution
results and simulation results, two copies of the randomly generated
irstruction stream are available. Therefore, one stream is used as a
reference, one stream for simulation and one stream for processor
execution. The function of this module is accomplished by:

* A random selection of CP CODES from the OP CCDE pool
previously built.

a As each OP CODE is placed intc the randcm stream, the
operands for that particular CF COtE are forced.

" As operands are placed into the random stream, ar.y register
or data area associated with the operand is provided.

* Interrupts are forced into the stream.

Two copies of the randcm streau and data areas are made
available.

8-18

-A.&

E176175A FINAL EEPCRT lEkruary 29, 1980

E.2.2.1.6 "TEST" Routine. The function of this routine is to
continue test case execution until either an ending EEgueLce for the

instruction stream or an error is detected. This routine controls the
secuence of execution of the "TEST", "EXECUTE", "CCMPARE" and "OUTPUT"
rcutines. The sequence of events through this module is:

" Preparation of pointers followed by the sivulation of the
random instruction stream.

* Provide a random stream for execution on the processor and
the saving of the results cf that execution.

* Cause a compariscn of the results of the simulation to the
results of the execution tc determine the extent of success
of processor execution.

* Cause a nardcopy of stream and/or data areas based on
operator parameter selection.

" Cause an attempt to isclate cn a detected processor
execution error.

E.2.2.1.7 "5._j_ " Routine. This routine simulates the
instruction provided to it from the random instructicn stream. This
is accomplished in two basic steps: (1) a simulation of instruction
fetch as performed by the processor unit, and (2) a simulation of the
instruction utilizing a basic set of instructicns for simplicity. A
ftrther breakdown of events follows.

* The instruction length code and address of the next
sequential instruction are calculated and saved.

* The architecture table entry for the OP CODE of this
instruction is obtained to determine the various types of
interrupts which can occur from this instruction.

* A determinaticn is made as tc whether this instruction is
capable of causing interrupt to occur.

" The OP CODE is checked tc determine if it is legal,
privileged or illegal with corresponding interrupt if
necessary.

* The OP CODZ format is used to determine if cther interrupts
can occur from the specificaticn cf the operands.

* If no interrupt is detected to this point, the instruction
is simulated.

.2.2.1.8 "Ej j" ou-tine. This routine provides the randomly
c nerated instruction stream to the processor for execution. The
system environment is maintained by trapping the state of the machine

A-.&

f176175A FIVAL FEPOPF Petruary 29, 1980

prior to instruction stream execution and restoring that state upon
return from execution. The events which cause this transition are:

0 The current state of the machine (that is; the contents of
general purpose, floating point and control registers as
well as the system status) is chtained and saved.

* The register contents required for stream execution replace
the general purpose and floating point registers.

* Any control registers are altered tc reflect the
requirements of the stream to te executed.

* The Machine State (Instruction Ccunter, Status Word, aud
System Interrupt Mask) to cause the randcm instruction
stream to start execution on the processor is established.

An "in-the-stream" indicator is set to identify the last
location of execution.

The new state of the system is imposed and the processor
begins to execute the random irstruction stream.

Ccntrol does not return until the execution of the random stream
results in an interrupt and that interrupt is processed. At this
time, the "in-the-stream" indicator is reset and the Exerciser routine
is complete.

E.2.2.1.9 "COMPARE" Routine. This routine compares the results of
tie Simulator routine frcm Simulating instructions and the results of
tle Execute routine frcm processor execution to determine if an error
has occurred.

In general, all machine state and data areas (including registers)
from the Simulator and EXECUTE routines should match at the time this
routine receives control. There may exist cases which are special and
which would not result in equality between all fields; they are
architectural dependent and must be defined "a priori", and handled
specially.

8.2.2.1.10 "OUTPUT" Routine. Hardcopy results cf the test cases are
Trovided via this subroutine. A varyirq arcunt of printer output is
available based on operator specified parameters, values of operands
within the random instruction stream, and the location of an error if
cre has been detected.

Cn CPU restart, the following informatic is provided:

* A display of the program contrcl area.

8-20

Q W L

E176175A FINAL PEPCFT Fetruary 29, 1980

A display of the operator selected and program randomized
parameters.

A display of the OP CODE counters, i.e., instructions which

have been executed.

* If a random instruction stream exists, then a display on:

- The random instruction stream in a readable format.

- The interrupt history, or the results of the acutal
instruction stream execution versus the results of the
simulation of the instruction stream.

- The control, general purpose, and floating point

registers associated with the stream.

- Any data area which is referenced by the stream.

Irror information and/cr trace infcrmaticn is provided dependent on
the operator selection of a "PRINT" parameter. If an unexpected
interrupt or a data error occurred and a printout is desired then the
fcllowing information is provided:

* The program history, if requested via a "HIS[CY "P parameter.

0 The operator selected and program randomized parameters.

0 The interrupt and OP CODE counters if requested via "COUNT"
parameter. This parameter is reset by the program and must
be respecified for subsequent counter displays.

* The random instruction stream in a readable format.

The interrupt history of the results of the actual
instruction stream execution versus the results of the
simulation of the instruction stream.

" The control, general purpose and floating point registers

associated by the stream.

* Any data area which is referenced by the stream.

* A trace at end of stream does not include a display of the
program history.

" A trace after interrupt comparison does not include operator
and randomized parameters, or the interrupt and OP CODE
counters.

* A data error causes a double display to be made. One area
contains the error while the seccnd area is the reference.

8-21

E76175A FINAL REPCU February 29, 1980

e.2.2.1.11 Architecture Table. For each architecture subset
rermitted via the opticnal MIL-STD-17%_ functions cr features, a
separate architecture table is provided. This table is a variable
length table which contains all the rules cf usage of each OP CODE
(and OP CODE extensions) supported by that particular architecture.
It also identifies those OP CODES (and CP CCDE extensions) which may
net be used by an architecture. (Note that the ccmmard word from the
1/0 instruction should be considered as an extension to the OP CODE.)

The architecture table is established by means cf a series of macros.
Once complete, the table is presented to the test program as a
directly accessed table.

8.2.3 Costs

Ehe fcllowing resources with their respective costs are required to
iurlement the Two Level MII-STD-1750 certification capability at
SIAFAC. Note that the Non-Recurring Start-Up cost of $933,000 and the
Pecurring cost of $306,000 suvs to a total cost of $1,239,000 which is
less than the sum of the ATP approach and Bandom approach alone
($1,470,800 = 617,000 + 853,800) because scme duplication of effort is
e]ifirated.

8-22

ML AA

E176175A FINAL REPCE'I Feruary 29, 1980

Non-Eecurring
Start-Up Cost

ITEM (rar Years)

SCETWARE

Development Computer System Utilities N.C.

Support Software

- Cross Assembler for MIL-STD-17C = N.C.
- Linkage Loader = N.C.
- Simulator - N.C.

Modification of AN/AYK-15A ATP - 3.1

Modification of MIL-STD-1750 Simulator = 2.0

Development
- Bootstrap Program = 0.3
- Random Instruction Generator = 3.0
- Control Program on Master - 1.8
- Supervisor Program on Slave for Random = 1.4
- Source Tape Generator Program - 0.3
- I/G Test Programs = 0.5

EARDWARE

Development Computer - N.C.

Master Computer - N.C.

MIL-STD-1553 Serial Channel Interface = N.C.

C S-232 Serial Channel Interface N s.C.

Test Plan Document = 0.3

SUPIOTAL 12.7 man years
System Integration Factcr (€) 0.63

13.33 man years/
TCTAL $933,000

8-23

3.l

6176175A FINAL REPCES Fehruary 29, 1980

Ile Recurring cost for 30 computers is 1306,000 = ($10.2K * 30). This
figure is derived from the following information:

Cost
Recurring Cost Item/Computer (K Dollars)

Hardware Maintenance 0

Software Sustainence
- ATP 4. 14

- Random 2.7

Perscnnel

- Coverage to Initialize, Observe, and 2.8
Analyze Results (2 people fcr I week)

- lechnician to Supervise Integration of 0.28
I/O Interface

Other

Test Plan to Vendor with Verification 0.28
Source

TOTAL 10.20

8-2U

E116175A FINAL FEPCI Fetruary 29, 1980

E.3 CERTIFICATION SCENARIO

After all phases of the MIL-SID-1750 Certification Procedure have been
designed, implemented, documented and debugged, the following series
of events will take place concerning a vendor certification:

1. A vendor contacts SEAFAC perscnnel, citing the need for a
certification.

2. SEAFAC makes available to the vendor, what requirements must
be met to complete the certification (software, GSE, and
I/O), providing source modules of the static verification
program used in the first phase of testirg in the form of a
Certification Test Interface Document (see Appendix E).

3. Time is allocated for the certification process to take
place.

4. The vendor arrives on site with the mIL-S i-1750 computer
and related Ground Support Equipment, and is given time to
shakedown and cable-up his hardware.

=.. The first phase of verificaticn testing is conducted under
supervision of SEAFAC personnel and vendor representatives.
Any discrepancies are so noted, all results are documented.

6. The second phase of verificaticn testing is initiated and
left to execute for a fredetermined length of time. The
length of time is propcrticnal to the speed of the unit
under test and the number of test cases desired to be run.

7. After a thorough review of all test results, an official
statement of ccmpliance cr non-compliance is made by SEAFiC
concerning the vendor's MIL-SiE-1750 ccmputer.

E.4 IMPACTS TO MIL-STD-1750

The recommended approaches do not required any spjcial features to be
added to MIL-STD-1750 because of verification tests.

E.4.1 MIL-SD-1750 ARCHITECTURE CONTRO1

A complete, detailed, unambiguous specification of any computer
architecture (like 11IL-STD-1750) is essential to a certification
effort in order to ensure that a compatible verification is possible
for all vendor implementations.

8-25

E176175 FINAL ?EPCP1 Yekruary 29, 1980

Ile architectural specification (MII-SID-1750) itself is not immutable
(fixed) for all time; rather, ccrrections, modifications and
extensions will need to be made over time. Thus, a change mechanism
needs to be provided for MIL-STD-1750. Control of pctential changes
is critical by this change mechanism a-d must be predicated upon a
cicund rule that upward compatibility is required. That is, a program
written for a MIL-STD-1750 implementation will run and give the same
tire independent and implementation independent results on an
inplementation based on MIL-STD-175CA. (Of course, this assumes
similar resources for both computers such as 32K stcrage on both
machines.)

The upward compatibility enables the verification program to migrate
stccessfully from an implementation based on MIL-STD-1750 to an
inplementation based on MIL-STD-1750A. (Of course, the verification
program would need to be extended; but deletions or changes would not
le required.)

7hus, it is required that different release levels cf the verification
prcgram would need to be maintained with at least one release level
associated with each MIL-STD-1750 release level.

E.4.2 SUBSETS OF ML-STr-1750

Ihe issue of defining architectural subsets has an important design
impact on the certification process's verification approach.

Subset specification guidelines cr rules must be Frcvided by the
III-STD-175C specificaticn and certificaticr testing oust ccnform to
tlese rules. Since the existence of subsets will require special
treatment in the verification approach (as well as either multiple
assemblers or a more complex assembler) with subsetting capability,
subsetting should be examined carefully. The following is a candidate
process for providing menber specificaticn:

8-26

E116175A FINAL PEPCFT February 29, 1980

RULES CP IO

Must Choose One Fixed Point

[] 16-Pit Arithmetic
[] 32-Eit Arithmetic
[] 16-Eit and 32-Bit Arithmetic

May Choose One Ficating Point Arithmetic

[] Short (24/8)
J] Shcrt ard Long

lay Choose [] Expanded Addressirg
(options) [] MIL-STr-1750 I/O Protocol

- F II-STD-15E3 Subset
£] Prctection

- [semory
- Superviscr/Problem States

[:] Start-Up BOM(] DNA

Thus, many subsets of the architecture would be peruitted following
this set of rules. The simplest member wculd be characterized as a
16-bit fixed-pcint processor; the other extreme would comprise the
entire architecture.

Ilerefore, multiple architecture subsets require special design
ccnsiderations for the verification program in crder that it proprly
tests all possible machine implementations.

Parenthetically, the same design ccnsiderations is required for
support software. For example, the compiler may need tc flag floating
pcint equations as illegal for the simplest member. Tke assembler may
likewise need to flag illegal instructions for this sizplest member.

8.5 IMPACIS TO SEAFAC

Il e impact to SEAFAC due to implementing the MIL-STD-1750
certification capability as a two level approach focus cn staffing and
hardware.

8.5.1 Staffing

Staffing requirements necessary to implement (totally within SKAFAC
without any subcontracted work) the recommended verification
approaches consist of the following:

~8-27

-~
-

- -- -- " -.i .

E176175A FINAL PIPCI Yetruazy 29, 1980

Ingineer to implement the I/O interfaces

lead Programme with an architectural tackground

support programmers (5)

'.he staffing required to sustaln the reccmmendation follows:

Engineer/technician to supervise the I/C integraticn

Progratmer/technician to initialize, invoke, and observe the
verification program execution

Certification Coordinator

Programmer to maintain the verificaticn programs.

E. .2 Ph yscal Resources

Ite physical resources necessary to implement and sustain the

recommended verification approaches consists of the follcwing:

Master Computer with Associated Peripherals

Auxiliary Storage (disks)

ragnetic Tape Drives

Printer

'imeskaring Operating System

MIL-STD-1553 Interface from the Master Computer

RS-232 Interface frcm the Master Couputer

MIL-SID-1750 Support Software

Cross Assembler

Linkage Editor

Simulator

Library

Utilities

.ower/Lab Space

8-28

E176175A FINAL PEPCP'! February 29, 1960

9.0 EPILOGUE

IE. is fully confident in the results of this study as documented in
this revort; however, it is important tc recognize that these results
are based upon the set of ground rules (developed with Air Force
guidance) which are described in Secticn 2. Different results could
be obtained if these ground rules were changed or modified; therefore,
it is important to take these results in the context of the ground
rules. However, enough information has been provided in this document
tc permit re-evaluation of the recommendation if tle ground rules
change.

S.1 OESERVATICNS/COMMEVIS

turing the study phase of this ccntract, many interesting questions
were discussed by the IBM team members. This secticn covers those
questions with our responses.

"Since either the diL-STE-1750 specificaticn will mature over time co
else the verification prcgram will mature cver time, what happens to a
previcusly certified ccmputer?"

Retesting needs to be considered. A reasonable scenario for
retesting would be to recall all certified ccmputers for retest
whenever the verification test is updated. Any discrepancies
found would be recorded and published so that users would be
aware of the limitations of these existing computers vis a vis
the latest level of standard or verificaticn methcd.

"Vbat advantages or disadvantages arise from supplying vendors with
tle verification programs?"

The advantage to the vendor is that each itplementation could be
pretested prior to the certificaticn process at SEAFAC. This
could make the certification process less painful to the vendor.
The advantage to the Air Force is that mcre mature hardware
implementations would be submitted for certificaticn testing. An
expressed concern is that a vendor would "hand tune" its
implementation to only consider the tests in the verification
program. If the verification program is of high quality, this
should be an advantage, not a ccncern. Furthermore, IBS believes
the two step certification testing process with the Random
approach as the seccnd step eliminates this ccncern.

9
i 9-1

° -4--- -

f176175A FINAL FTPCP7 Fekruary 29, 1980

"For the manual Test Ccnfiguration, isn't it improper foz the load
tapes to be generated by the vendor?"

In the Manual Test Configuration, the study assumed that the
vendor would generate the load tapes for use durinG the
certification process. It was assumed that keeping the load tape
for future reference would provide adequate control and
protection for the Air Force. It has been suggested that this is
an improper approach since merely taving the means to establish
the validity of the test after having conferred certification is
not sufficient in light of the cost, schedule, and competitive
damages that could occur. This is acknowledged and is further
rationale for not recommending the ranual Test Configuration. Cf
course, other means cf providing the desired level cf control can
be envisioneC such as, requiring a standard load capability for
all vendors. However, these alterrative methods all have added
costs associated with them and further support the
reccmmendations of the study.

"Should a minimum main storage size be required for the certification
piccess?"

Yes, a 32K minimum storage size is required. However, some
systems might specify less than 32 storage. For these systems,
it would be permitted to let the hardware engineers satisfy the
32K storage requirement by prcviding a memory exparsion connector
(which may be inside the box) tc provide an external memory
extension up to 32K. This expansicr could be of commercial
quality.

"Should a standard I/O channel like NII-STD-1553 or RS-232 be required
for certification?"

h standard NIL-STr-1553 interface is required. For systems
without g.IL-STD-1553, the hardware engineers again could provide
this feature by providing an I/O ccnrector (which may be inside
the box) which ccnnects to an external box providing the
MIL-STD-1553 function; or the hardvare engineer cculd provide an
ES-232 connector in the box. The external I/0 Icx could be of
corrercial quality.

9-2

f1I6115A FINAL FEPCFT Fetruary 29, 1980

"Ecw much error reporting should be provided to the vendor when a
rtctlem is encountered during certificaticn testirg?"

The state of the machine at the start of a test case, that
specific test case data, the results of that test case after
execution upon the machine under test, and the expected results
(either predetermined or simulated) should be prcvided tor each
test failed during the certification process. However, it is not
considered the province of the Air Force to prcvide diagnostic
information.

"Shouldn't future research be considered for Either the Analytical
Afproach or the Computer Harduare rescription language (ISPS)
approach?"

Further consideration should be given to describing the
! L-STD-1750 architecture in these approaches in crder to mature
the architecture specification thrcugh a thorcugh simulation
effort and to increase the confidence in this architecture.

"Are any additional functions required by the Air Force to further the
standardization effort?"

Perlaps the Air Force could establish a library of operational
software functions like SINE, CCSIVE, IBCTANGENT, NAVIGATION,
KALMAN FILTER, etc. Perhaps the Air Force cculd provide funds
for membership participation in the MIL-STr-1750 Users Group.
Perhaps the Air Force could put an organizaticr in place to
control, distribute, and maintain Support Software like High
Order Languages, Assembler, Simulatcr, Linkage Editor, debugging
tcels, etc.

"How does one determine when to stop the Bandcm verification
a pproach?"

A statistical analysis of this problem has been non-productive;
engineering judgement has to be used to determine when to stop
the Random program.

9-3

... .. --.. 2 5
=

7

E176175A FINAL FEPCP! Fetruary 29, 1980

"Doesn't connecting to the VAX 11/780 strain that rescurce ty being
dedicated to the certificaticn process?"

The VAX 11/780 provides a vulti-programmable capability;
therefore, the verification prograt on the VAX 11/780 could run
concurrent with other applications.

"ghen using a Random verification program, how does a test sequence
cet repeated for a computer which is resubmitted for certification
after previously failing the Pandcm tests?"

The Random verification program shculd request the base seed at
its start. This permits the Generator Procram the same
pseudo-random sequence cf instructions based upon the
initialization seed used when the computer first failed.

"cw many test cases are required per an average instruction to test
the architecture without hardware dependencies being krcwn?"

Architectural verification programs average 25 tests per
instruction in order to thoroughly test the architecture without
_g Eriri knowledge of irplementation details.

"Wbat testing philosophy should be used regarding exceptional (error)
conditions?" (e.g., Store Multiple (SIM) crossing page protection
toundaries, an unnormalized floating pcint cperand.)

Not only should testing for normal conditions cccur, but even
more important is the testing of the exceptional (error)
conditions and the status cf the machine upon ccmpletion of the
error event. e.g., a Store Multiple crossing page boundaries
from an unprotected page into a prctected page should terminate
tte same way on any machine being tested; that is, STM should
terminate without stcring into the protected page and this should
he so tested.

"Phat testing philosophy should be used regarding "Required",
"Cpticnal", "Reserved" and "Spare" features in MII-STD-1750?"

"Required", "Optional", and "Reserved" define architectural
features which must be tested; "Spare" is not defined and cannot
be tested.

9-u

E1761T7A FINAL REPCE! Fekruary 29, 1980

"Ihat testing pnilosophy should be atrliEd to imjlied conditions in
tle !!TL-STL-1750 architecture?"

An example of an implied condition is storing orly the IM, SW,
and IC into main storage when an interrupt cccurs. In this case,
the adjacent locations should also be tested to guarantee they
did not change (i.e., defining a four word PSW is illegal,
therefore, implied conditions should also be tested.

i 9.!

E176175A FIVAL FEPC?7 Fetruary 29, 1980

THIS PAGE IVTENTICVAIIY IFFT BLAWF

19-E

E17617.A FINAL REPCRT FeLruary 9, 1980

1C.0 A.PPENDIX A - SEAFAC FACILITIES

he System Engineering Avicnics Facility (SEAFAC) is an avionic
hct-bench and test facility within Avionics Engineering Directorate
(ENA) Aeronautical Systems Division (ASr) of the Air force at WPAFEB.
Criginally organized to analyze, design, simulate, and evaluate
avicnic equipment in a total system cortext, the facility has been
tasked to play a key role in the standardization effort of the Air
Force. Through SEAFAC, the capability to aid users in the application
cf standards and to verify ccmpliance with the standards is being
developed cn an evolving basis to meet the requirements of ttie Air
Fcrce.

rith respect to stanaards verification, SFAFAC has been the principal
acency for the dIL-STD-1553 bus effort. Three generations of bus
testers have been designed to provide bcth in-house and on-site
certification and system engineering of MIL-STD-1552 equipment. A
number of projects have been addressed in support of Program Office
activities which has expanded the role cf SEAFAC in providing benefits
and capabilities to ASD.

7te resources available at SEAFAC consists of:

1. Physical Plant - Facilities fcr administrative support and
capabilities tc acccmmodate hct-berch system ccniigurations,
hardware design and fabrication, and testing and evaluation
are available.

2. Electronic Hardware - A variety cf hardware resources exist,
including:

a. PDP-11/55 computer system with links tc a IIL-STD-1553
data bus. Mass memory is provided ty two RK-05 disc
drives (each containing 2.5 megabytes), two RK-06 disc
drives (each containing 12.9 megabytes), a auai floppy
disc drive, and a 112K word memory.

b. PEP-11/34M with 32 kilcwcrds of main iemori and with
custom designed bus interface unit for bus controller
or remote terminal operation on a MIL-SlE-15.;3 bus.

c. VAX 11/780 ccmputer system with 1 million bytes of
memory, two PM03 disc drives (each containing 64
meganytes' , 2 switchable shared RF-06 disc drives.

d. Microcomputer develctment system (e.g., IMP16, SILENT
700, 8080).

e. Remote terminals for access to AEC computer center
containing a CYnvR 175 ard System 360/37C emulator.

A-1

E176175A FINAL FEPCFI Fekrua: y 29, 1980

f. Minicomputer (CP-16A and AYK-8).

g. Test equipment including reters, scopes, generatorz,
logic analyzers, custom designed multiplex data tus
testers, and MII-STt-15 3 verification equipment.

3. Software - Support software for the PDP-11/55 consists of
the RSX-11M operating system, Macro-11 assembler, and
FORTRAN IV - PIUS compiler.

4. Personnel- The SEAFAC personnel contingent is comprised of
hardware engineers, software programmers, and technicians
with experience in configuring and implementing hot-bench
avionic system setups. his branch of the Aeronautical
Systems Division is brcken intc three %crking groups;
Hardware, Software and Multiplex. The staffing level for
each of these groups is as follows:

Hardware
Engineers 6
Technicians 3

Software
Programmers 2
Technicians 2

ljultjplex
Engineers 4
Tech.icians 1

A-2

6176175A FINAL PEPCF1 February 29, 1980

20.0 APPENDIX B - ESTIMATICN CP IEE lC.A1 NUMBEF _C AECHITECTURAL
tISC FP ANCI ES

!his section describes in detail the methcd for projecting the total
number of architectural discrepancies. As discussed previously,
Ingineering Changes (ECs) are a measure of the tctal number of
architectural discrepancies which have been found to date for a given
machine design. It is desirable tc know the tctal number of
architectural discrepancies which remain in a machine at the time of
sell-off, i.e., those already found rlus thcse wh.;.ch remain
ur d iscovered.

It is expected that the rate of discovery of architectural
discrepancies will be an expcnentially decreasing function of time.
Iritial use of the machine will be for the development and validation
of operational software. This new software will exercise the machine
in new and previously untested mays. It is expected that most
discrepancies will be discovered early in this usage. As the
application programs become more developed, fewer and fewer new
ezercises of the machine are oerformed, and the rate of error
discovery declines. Finally, after the apFlications programs are
completely developed and in use for some time, the rate of discrepancy
discovery approaches zero. This may he F!ctted as shown in Eigure
20-1, where

f (t) is the number of ECs discovered as a function of time.

Ile area under this decreasing extcnential curve (i.e., the integral)
is the total number of architectural discrepancies which remain in the
machine after sell-off, which is the desired quantity.

Ie curve is of the form

-bt
f(t) = ae . (1)

Ic calculate the area under the curve, let C equal the total number of
architectural discrepancies. Then

i

L. .

E176175A FINAL FEPCFI Fehruary 29, 1980

f (t)

(Rate of Discovery
of Architectural
Discrepancies)

sell-fft

Figure 20-1. Expected Number of Architectural Discrepancies Over Time

o0 o -bt
C OfJf(t) dt = f ae (2)

a -bt
= - -e (3)

b o

a
- (4)
b

20.1.1 The Decreasing ExPonEntial Metlod

In order to compute C, it is necessary to fit a curve (with the
correct values of a and b) to the data, f(t), which might appear as is
Ehcwr in Figure 20-2.

This may be accomplished by taking the natural log transform of the
data, thereby making it linear and then Ferforning linear regression
analysis to obtain the best fitting line. This results in a
semi-logarithmic curve fit. (This will be called the deS_; Easinq

B-2

E176175A FINAL REPOPI Fetruary 29, 1980

WA/ (t)

(ECs of Architectural
Relevance)

sell-off Months after sell-off, (t)

Figure 20-2. Expected Data: ECs after Sell-off versus Time

e-ionential method.) The transform is

A -bt
ln(f(t)) = ln(ae) = ln(a)-bt (5)

The right-hand side of this equation is in the form of a straight
line, for %hich the general expression is y = mx + b, where m is the
slcpe and b is the y-intercept. Linear regressicn analysis yields the
slope, in this case b, and the intercept, in this case in(a), which
are the desired variables. To obtain the value of C, the value of b
and the anti-log of ln(a) are taken and applied to Equation (4).

B-3

E176175A FINAL REPORI Feruary 29, 1980

Tbe slope and intercept are calculated as fcllows:

iA

t * f(t
i=1 i ii A

slope = b = L ()(6)

t

A
intercept = ln(a) = f(t) - b t (7)

i i

wh-ere ti are the months after sell-off ard f(ti) are tie corresponding
rusber of ECs of architectural relevance for those orths. N is the
tcta.]I3uwber of data points. The average value of '(ti), represented

N A
i c f (t) (8)

A i=1 i
f(t)

i N

the average value of ti, represented by ti, is

by I tit (9is

NA

t (9)

A .=1i
f ---------

i N

ii

2
7he variance of the t values, rt , is

N 2

-= (10)
2 i=1 i 2

C -------- t

t N

As an application of this method, the data from a System/370 model may
he evaluated. (It is not intended that the results le evaluated in
tiis section. This evaluation appears in Section 7. The data are
hicucht here for the purpose of illustraticn.) The data is shown in
iatle 20-1 and is plotted in Figure 20-3. The natural log transform
of tie data is taken, using Equation (5), and the best fit line is

B-4

E176175A FINAL FEPCFr February 29, 1980

fcund using Equations (6),(7),(8),(9), and (10). These are plotted in
ficure 20-4.

Table 20-1. ECs of Architectural Relevance Frcm A System/370 Model

+--

A I
Month (t) ECs (f(t))I

I4

2 4
3 3
4 3
5 5
6 2
7 5
8 3
9 1

10 4
11 1
12 0
13 2
14 I4 I
15 1
16 2

Total 44

- ---

E176115A FIVAI TEPCFI Yetruary 29, 1980

ECs 4

found

3-

2-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Months after Sell-Off

Figure 20-3. ECS of Architectural Relevance for System/370 Model

versus Tive

A
f (t)

5-

4-
ECs
found

3-

Lp 1.451 - 0.0668t

Months after sell-off

Figure 20-4. ECs of Architectural 1RelEvance for Systeum/370 Model
versus Time and Transformed Data viith Best Fit line

6176175A FI NAL PEPCPT February 29, 1980

Note that no ECs were found in month tuelve. This presents a problem
since ln(O) equals minus infirity. Fcr this analysis, the twelfth
ocnth was assumed to have one EC. This Froblem will be discussed in
mcre detail later.

The straight line found is

A
in (f(t)) = 1.451 - 0.0668 t (11)

AA
This yields the desired curve, f(t), by taking tIe anzti-o: oz
Equation (11).

A A
A ln(f(t)) 1.451 - 0.C6E8t
f (t) = e

(12)
- 0. 066et

4. 267 e

!_his is rlctted in Figure 20-5.

A

4 -

ECs
Found 0.0668t3- f_ -. (t) = 4.267e

2-

1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16

Months after sell-off

Figure 20-5. ECs of Architectural Relevance for System/370 Model
versus Time and Best Fit Curve

A total of 44 ECs were found hy the end of the 16th month as shown in

B-7

E176175A FINAL PEPCFT fetruary 29, 1980

lable 20-1. The total projected number cf architectural discrepancies
is found as follows:

a 4.267
C - = ---- = 63.88, or approximately 64 (13)

b 0.0668

In ctber words, 20 additional discrepancies are projected, but remain
trndiscovered.

As menticned previously, a difficulty with this decreasing e 5EQential
method is its inability to handle data points of value zero, since the
natural log of zero is minus infinity.

20.1.2 'he Cumulative rata A roach

At alterna-tive approach is to use the cumulative function, which has
crly ncn-zero values.

he cumulative function, denoted by g~t), is the integral of the
original data function, f(t).

g(t) = J (t) dt = P dt

= afe t dt

a -bt
= - - e + C , or using lquation (4)

b o

-bt
=C - C e (14)

0

It is known that at t = 0, no ECs have been found. Therefore g(O) = 0
at t = 0. Using Equaticn (14),

B-b

A A-

E176175A FINAL REPCIT fetruary 29, 1980

-b x 0
c(0) = C -C e

00

0 = C -C e (15)
0

C = C
0

Tle resulting form of the cumulative functicn is:

-bt
g(t) = C- C e . (16)

this is plotted in Figure 20-6.

g (t)

C -

t

Figure 20-6. Cumulative ECs Over lime

'Ie asymptote, C, is the total projected number of architectural
discrepancies.

Ite goal once again is tc fit the best curve to the actual data, i.e,
determine the best values cf C and b. An example of what the
cumulative data, g(t), might look like is shown in Figure 20-7.

B-9

E176175A FINAL PEPCP7 february 29, 1980

Cumulative
ECS

Months since sell-off

Figure 20-7. Cumulative FCs Over Time, Data

It would be desirable to take the log transform of the data (to make
it linear), fit a straight line by linear regression, and then take
the anti-log to obtain the curve, as was dcne previously with f(t).
Urfortunately, the natural log of C-Ce -bt dces not produce a straight
line. Note that the derivative (slope) is

d -bt 1 -bt
-- n(C- C e)=---------- C b e
dt -bt

C - C e

-bt
b e

-bt
1 - e

-bt
Since the slope of in (C - C e) is nct a straight line, but is a
function of t , linear regression analysis cannot be used. Therefore,
tle fcllcwing approach to fitting the best curve (chccsing the best
values of C and b) is used.

B-10

,•.. l i .L

E176175A FINAL FEPCFP! Feruazy 29, 1980

First, an arbitrary value is chosen fcr C and the data, g(t), is
suttracted from it. This yields

-b t
h(t) = C - g(t) =C e (18)

which is plotted in Figure 20-8.

h (t) Ce-bt

t

Figure 20-8. C Minus the Curulative EC Function

Next, the natural log is taken.

ln h(t) = in C - bt (19)

B-11

_ _ _ _ ".- .-- ,

E1 E17cA FINAL FEPCFI Fetruary 29, 1980

7lis is in the form of a straight lirE, Uich iE Flctted iin Figure
2C-9.

In [h (t)
in C -b

Figure 20-9. Log Transform of Cumulative Data

Since this is in the form of a straight line, linear regression
aralysis aay be applied to determine the line that test fits the data.
Equations (6), (7), (8), (9), and (10) are applied, except that f(t1i)
is rerlaced with [in h(ti)].

IFe slope, b, has thereby been determined and, since C %as chosen, the
equaticn for the curve is complete.

Ile difficulty remains that C was chosen arbitrarily. She solution is
tc choose different values of r and then determine the goodness of fit
between the resulting curve, ?(t) = C - C e- bt, and the data, g(t).
Ile Letter the fit, the better the estimate of C. This process is
tten iterated until the Lest estimate cf C is obtained.

'So different measures of the degree cf fit can he used: the
correlation coefficient (r) of the line calculated by regression
analysis, and the squared error of the calculated cumulative curve,
0(t), and the cumulative data, '(t).

The correlation coefficient is a measure of the degree of association

between the randcm variables (ln[h(ti) ,, ti) (ln[h(tn)], tn). It

is denoted by r and is calculated by using the fcllcwing expression:

B-12

f 1761c A FINAL FfPCr" Fdtd.u, 19F0

N

N; I) * tq (t' / " t'

r = -- '

I [s t] * (t

!!rte that t 1_ 6 ap Iis t~ t~ I~ tr 1r: tT t.

Etraigbt line. Ite 1.iQhrr the I-value, tie t-t4,-L the tit.

'te scuared error is a measure cf the fit -f t., :- Se ti CULV bt'

thc data. It is caiculatEd ty the fclcwirc fc~z~a

N p

Squared Error L (ti - ()

The curve shown in Figure 20-10 helps in visualizinc tt IE uard eI-L0

ccncept.

P-13

m1 f11 FTNAI FEFCF7 FEtruazy 29, 1980

Cumuistie
ECi

btt

ii~ur 1!)1C* cua.re Iricr I(Fresertaticr

~r 'd C V C. t7 t t t C lilfcrerc, r~tuccr tLt fittEd cuive and the
a taIS La ke L nr-S E t4cr~ m nre t - . F ULtr 4:. FkE- tEtter th4E fit of

+- c-':rvk t- tr. -a ,, tI, 1 c wrr t I t ctal EcuarEc Errcr.

717 FUMMdrlZtz, t;. VdAjU C,'- C, OICI 1 F tff tCta. CrrCECted Lumber of
a ,C-.Jt F t U L al rearcies vwhic1. rcmair i r. t F.e iwacIirE after
F-C-fl' ma) Lk e!st: ratE~ ly use of ar iterative ptocr.Gure. This
ICCVIUrP ~ILVOlVeL sc~lt-ctinq_ variouE artitlrary values ci t t] the

t -!t 's4ixat_ C: L I z- f CU r tase or. a uaximur r valuE oL a M!LiMUMj
uCca r C -I LC_ vaia. L

I ''~~A OA~N _ F A EY IIACWM-.F

I -C :c.....) v , t I trrcctced t ct a i. uiLEi ID
P r -C Lc~ ~Learc ~i e5: r uE-t hk- T-r'alZ 1)' izeI achazre sire izL
T~r a t d. :11 t-sti ma t f c f u a 1 it e cltaircd fcr fct, of thce

4 rr~rcA i.16DEI A ir c 1 ectural di scrcrancieE cf a vt r i atior,
r(s. + dmr_ -nij) tki- r r i nalI ri ?c exrfcted for PVI-SL-1750.

1' 1p! I f- t k C1 Z, I,- I! F 17f . t~f h~umt~t o t cat(s u s cd a.
+ !-ac C z. Ir I.~ 1t:.; t i 1~ crcrrf F t aci c CCIlk d L U zaar

6k As~

E176175A FINAL FEPCF1 Fetruary 29, 1980

storace of the machine, either of %hich (if vorking incorrectly) would
result in an architectural discrepancy. It would he pcssible to
simply sum the sizes cf the logic, microcode and main storage.
However, it is expected that ecual weighting of a gate cf lcgic, a bit
cf microcode, and a bit main storage wculd exaggerate the importance
cf main storage. Therefore, each of the three components is
normalized separately. To acccmplish this, each of the ECs of
architectural relevance uncovered in this study is examined to
determine whether its cause is logic-related, microcode-related, or
main storage-related.

T .e projected numner of architectural discrepancies remaining in the
machine after the application of Verification Method A in the nominal
size MIL-STD-1750 machine (denoted by rISCPEP(1750)) is the sun of
three components:

DISCREPi /50) = Logic DISCEEP(1750) + ricrocode rISCEiE(1750)

+ Main Storage DISCPEE(175O) (Bl)

Assume that the architectural discrepancy data were gathered from
!achine B, which is different in size than the nominal MIL-STD-1750
machine. The first ccmpcnent in the alove equation, the number of
lcgic-related architecture discrepancies expected for a nominal sized
MIL-STD-1750 machine after the use of Verification Method A, becomes

Logic DISCREP(1750) = Logic DISCREP(E) x

machine size
normalizaticn
factor. (B2)

iere Logic DISCREP(B) refers to the projected number cf architectural
discrepancies associated with lcgic found in machine B.

ite machine size normalization factor in Equation (B2) is simply

machine size size of nominal 17!0 machine (gates)
normalization - ----------------------

factor size of machine E (gates)

he microcode and the main storage comrcnents are treated in a similar
fashicn.

As an example of the use of this method, the nomiral MIL-STD-1750
machine was expected to contain 30,000 gates, 200,000 microcode bits,
ard 1,000,000 main storage bits. Next, suppose that Verification
Method A was used on a large machine (E) and machine (B) contained

E-15

E1161"5A FTIVAL SEPCF' _ February 29, 1980

100,C) ^ gates, 400,000 micrccode hits and 10,OCO,000 main storage
hit' Also suppose that 50 architectural discrepaLcies were
Tro ;.ted. Of these, 30 vere logic-relatEd, 15 were
mic : le-related, and 5 were main stcrage-related. The projected
ruzbei of architectural discrepancies for Verification Method A for a
rcmin,. MIL-STD-1750 machine becoMes:

30,000 gates (1750)
ISCiBP(1750) = 30 logic DISCFEP(E) x--------------------

100,000 gates (B)

200,000 tits (1750)
+ 15 microcode riSCE() x -------------------

400,000 hits (B)

1,000,000 bits (1750)
+ 5 main storage DISCREFIB) x-------------------

10,OOC,000 bits (B)

= 30 x 0.3 + 15 x 0.5 + 5 x 0.1

= 17

Verificaticn bethod A would he exrected to ciss 17 (not 50)
architectural discrepancies %hen applied tc a machine of the nominal
i2e expected to be used in MIL-STr-1750 arplications.

Ncrmalization has prevented an over-estivation of the total number of
architectural discrepancies for Verification Method A simply because
it was used on a large machine (B).

P-16

-. a.. ..

V"76v15A FINAL REPCEI Fehruary 29, 1960

3C.0 .PPENLIX C - PFCGRAMS FCP ESTIMATING TC AL NU p5£ C f
AFCBT TFCTURAL DISCREPANCIES

VESTIMA TE(0)v
V ESTIMiATE

[2] R ESTIMATE C (TOTAL NUMBER OF EC'S) BY SUCCESSIVE APPROXIMATION
131 A (0) INITIALIZATION --- CHI = 200 CLO = TOTAL NUMBER OF KNOUN EC'S

[4] A (1) ESTIMATE C: MIDPOINT OF CHI AND CLO
[51 A (2) FIT CURVE TO DATA (USING ESTIMATE OF C)
(61 A (3) FIT CURVES USING C.1 AND C-1
(7] A (4) IF SQUARED ERROR OF CURVE FOR C i SQUARED ERROR OF CURVES FOR
(1 a C.1 AND C-1 THEN C IS BEST ESTIMATE: STOP
[9] A (5) IF SQUARED ERROR OF CURVE FOR C-I t SQUARED ERROR OF
[10] A CURVES FOR C AND C.1 THEN CHr - C l; GO TO (1)
(111 A (6) IF SQUARED ERROR OF CURVE FOR C+ I, SQUARED ERROR OF
(12] A CURVES FOR C AND C-1 THEN CLO - C-1; GO TO (1)
1131 i
(141 0#'-
(151 0-' '
(161 [I+'
(171 0.-' A-7 ENGINEERING CHANGES'
(1] 0-,'
(19] X+.I(PY)
(201 0+-'MONTHS SINCE FIRST SHIP: ', 3 0 TX[tt8]
(21] 0+-'CUMULATIE EC''S: , 3 0 TY[118]
(221 1.-' 1
(231 O-IMONTHS SINCE FIRST SHIP: 3 0 TX(IB+tl7]
(241 0*-'CUHULATZVE EC''S: ' 3 0 TY[CIO.17]
(25] 0'- '
(261 CH14-200
(27] CLO'-Y (PY) -11
(20] 0-'ESTIPlATE OF C SQUARED ERROR
(29] LOOPtCMID-L (CHI.CLO)*2
(301 CI.-CKID-1
(311 CM24-CMID,1

C-1

E17~15AFINAL BEPCPS Fetruary 29, 1980

[321 C.-CtID
(331 X FIT Y
(341 SQIIID..SQERR
(351 0,,- 7 0 25 5 TCIIID*SQPIID
1363 C.-CM1
(371 -*(C)Y (PY)-l)/LD
(351 CO.C*..
(39] LOWX FIT Y
(401 SQ~ff1.SQERR
141] C*-CMt2
(421 X FIT Y
(431 SQ112*-SQERR
(441 #((SQIIDsSQfI)ACSOPIDiSQ2))IFINISH
(45] 4#(SQflID'SQII)/Ll
(461 CLO-CPII
(471 4LOOPI
(401 L1:CH.-Cl2
(491 -#LOOP1
(501 FINISH:0.-l
(511 0.- 'TOTAL PROJECTED ARCHI TECTURAL DISCREPANCIES'
(521 0.-'(SQUARED ERROR TECHNIQUE) 1,'TCIIID
(53] 041
(541 0*1 '
(55] 0#-'

Ai

E176175A FINAL REPCEI FetruaLy 29, 1980

vFIT[iv
V X FIT Y[1] n

[21 n FIT EXPONENTIAL CURVE TO DATA (C - Y)t
[31 a (0) LINEARIZE DATA: LN (C - Y)
[41 a (1) COMPUTE LINEAR LEAST SQUARED ESTIMATE FOR LINEARIZED DATA
(51) (2) SLOPE OF RESULTING LINE IS EXPONENT FOR EXPONENTIAL
[61 a (3) COMPUTE SQUARED ERROR BETWEEN DATA AND EXPONENTIAL CURVE
C7] n
[81 Zq-*(C-Y)
(91] 1Z4-MEAN Z
[101 MX#MEN X
S111 VARZ#VAR Z

(121 VARX#'VAR X
[131 STDVZ-VARZ*O.5
[141 STDVXN'UARX*0.5
[151 CROSSSUH4"'(ZxX)
[161 i
[171 a COMPUTE R, THE CORRELATION COEFFICIENT[181 a
[191 R.-((CROSSSUMI(PZ))-(MZxMX))4(STDVZxSTDVX)
(20 J SLOPEZ.-(RxSTDVZ)+STDVX
[211 n
[221 a F(C,SLOPEZ) IS THE EQUATION OF THE CUMULATIVE EC CURVE
[231 I
[241 SQERR+.- ((Y-(C F SLOPEZ))*2)

V

VFC Dlv
v Z*C F A

[1] Z-Cx(1-t(Axx))
[21

IC-3

E1761V75A FINAL REPOPI February 29, 1980

V Z.ViR X

(23 a coIPUTE THE VARIANCE OF X

[43 Z.(./C(X*2))GCX))-CCI1EiN M~AD

V Z*-HIEqN X

[23 a COMPUTE THE HM OF X

E43 Z*-(*/X)+i'X

C-4L

6176175A FINAL REPCFE Yehruary 29, 1980

40.0 APPENDIX L- ESTIMATES CF TOTAL APCRISICTUFAL DISCFEPANCIES

P-52D SPN/GEANS ENGINEERING CHANGES

MCNTHS SINCE FIRST SHIP: 0 1 2 3 4 5 6
CUMULATIVE ECs: 0 15 17 19 20 25 26

ESTIMATE OF C SQUARED ERROR
113 320.35137
70 272.04194
4-6 207.97211
37 140.829!2
32 91.88000
29 54.96710
28 42.76363
27 34.35369

TOTAL PROJECTED ARCHITECTURAL rISCREUACIES
(SQUARED ERROR TECHNIQUE) = 27

B-52D SPN/GEANS ENGINEERING CHANGIS

MCNTHS SINCE FIRST SHIP: 0 1 2 2 4 5 6
CUMULATIVE ECs: 0 15 17 19 20 25 26

ESTIMATE 0F C CORREIATICN CCEFTICIENT
113 -. 91590
70 -. 92712
48 -. 94218
37 -. 95714
32 -. S6556
29 -. 96672
30 -. 9671-6

T.OTAL PROJECTED ARCHITECTURAL EISCTEEAVCIES
(CORFELATION COEFFICIENT TECHNIQUE) = 30

D- 1jl

(176179A FINAL FEPCF' letruary 29, 1980

A-7 ENGINEEFING CHANGES

MCNTRS SINCE FIRST SHIP: 0 1 2 2 4 5 6 7 8 9 10 11 12
CUMULATIVE ECs: 0 0 2 2 2 6 9 9 11 12 13 13 14

MONTHS SINCE FIRST SHIP: 13 14 15 16 17 18 19 20 21 22 23 24 25
CUMULATIVE ECs: 14 15 15 16 17 17 20 20 20 22 22 22 22

MCNHS SINCE FIRST SHIP: 26 27 28 29 20 31 32 33 34
CUMULATIVE ECs: 22 22 22 22 22 22 24 24 24

ESTIMATE Of C SQUARED ERROR
112 431.75694
68 323.24758

46 196.48119
35 91.16330
30 46. 955E3
27 59.01848
28 46.65670
29 44.04095

TOTAI PROJECTED ARCHITECTUPAI tISCFUAVCIES
(SQU.RED ERROR TECHNIQUE) = 29

A-7 ENGINEERING CHANGES

MCNTHS SINCE FIRST SHIP: 0 1 2 3 4 5 6 7 E 9 10 11 12
CUMULATIVE ECs: 0 0 2 2 2 6 9 9 11 12 13 13 14

MCNTHS SINCE FIRST SHIP: 13 14 15 16 17 18 19 20 ;1 22 23 24 25
CUMULATIVE lCs: 14 15 15 16 17 17 20 20 20 22 22 22 22

PCNTHS SINCE FIRST SHIP: 26 27 28 29 20 31 32 33 -4
CUMULATIVE ECs: 22 22 22 22 22 22 24 24 24

ESTIMATE OF C CORFEIATICN COEFFICIENT
112 -.95E59
68 .96407
46 .97126
35 -. 78-2
30 .98295
27 .98281
28 .98411

TOTAL PROJECTED ARCHITECTURAL DISCFEFANCIES
(SQUARED ERROR TECHNIQUE) = 29

I
D-2

_ _ _ _ _ _ _ _ - - ---AWL -

f176175A FINAL FErC! fetruary 29, 1980

S/370 MODEL ENGINEERIEG CPANGES

MONTTHS SINCE FIRST SHIP: 0 1 2 3 4 5 6 7 E S 10 11 12
CUMULATIVE ECs: 0 4 8 11 14 19 21 26 29 30 34 35 35

MCNTHS SINCE FIRST SHIP: 13 14 15 16
CUMULATIVE EC.: 37 41 42 44

ESTIMATE OF C SQUARED ERPOR
122 97.82478
83 33.64729
64 19.76S86
73 19.L423 5
68 16.81260

TOTAI PROJECTED ARCHITECTURAL DISCRFAECIES
(SQUARED ERROR TECHNICUE) = 68

S/370 MODEL ENGINEERING CHANGES

MCNTHS SINCE FIRST SHIP: 0 1 2 3 4 5 6 7 E 9 10 11 12
CUMULATIVE ECs: 0 4 8 11 14 19 21 26 29 30 34 35 35

MCNTHS SINCE FIRST SHIP: 13 14 15 16
CUMULATIVE ECs: 37 41 42 44

ESTIMATE OF C CORRELATICN CCEFFICIENT
122 -. 99267
83 -. 99538
64 -. 99E37
73 -. 99615
68 -.99639
66 -. 99641

TOTAL PROJECTED ARCHITECTURAL DISCREPANCIES
(CORPELATION COEFFICIENT TECHNICUE) = 66

i

D-3

6176175A FIVAL 1FEPCFl Fetruary 29, 1980

THIS PAGE IEFT INTEWNICNIY BLAWK

D-4 *..

E176175A FINAL PEPCET Fetruary 29, 1980

50.0 APPENDIX E- CERTIFICATION II;TEPFAC! ECCUmENT

!O.1 DESCRIPTION

Ile Certification Interface Document serves as a means of

ccmmunication between SEAFAC and the vendor for the certification
Ticcess. This document contains detailed information cf the following
tye:

" Certification System Hardware Configuraticn

" Certification Scenario

- Schedule of Events

" Physical Resources Available tc the Vendor

- Power

- Space

- Cooling

- Access Times

* Vendor Provided Hardware

- MIL-STD-1750 Computer to te Tested

- MIL-STD-1553 I/C Channel

- Cables

* Vendor Provided Software

- I/O Subroutine Descriptions

* SEAFAC Provided Software

- Support Software

- Certification Program Source (two - AVP and Random)

- Bootstrap Program Source

* Vendor Certification Personnel Recuirements

E-1

E176175A FINAL REPCP'I Fetruary 29, 1980

* SEAFAC Certification Perscnnel

- Observer

- Technician

- Coordinator

E-2

6176175A FINAL FFPCPI February 29, 1980

E0.0 APPENDIX F - BIBLIOGPAP.!

Eartacci, M.R., A User's Guide to the ISPI Ccm ile r, 12 January 1976.

Earbacci, H.R., Instruction Set Processor Specific ations (IS.ES) the
Notation and Its Alplicat ions, 17 May 1979, CMU-CS-79-123
Carnegie-Mellon University, Pittsburg, PA.

Earbacci, M.R., ISP Descripticn of Four M~ilitary Ccpute r
Architectures.

Eartacci, M.R., Dietz, W.B., Sze'w.erenko, I., Specification, Evaluation
and Validation of CompEutgEr ArchitEctures U sin~ rj Istruction Set
PT5Ccesr Descrijj ____ 13 April 1979, CM~U-CS-79-118 Carnegie Mellon
tCriversity, Pittsburg, PA.

Firman, A., Correctness in Desigqn: 'Ihe S-Machine E xpfE riment, 17
January 1973, RC4193.

Eirman, A., Joyner, W.H., 1VS - A System for Microjjo~qram Validation,
Part 1 - -1h Skltn July 1974, RC-L4923.

Elikie, A., Budkowski, S., Certification of Microrrograns by an
Rlqg1traic Method, 9th Annual qorkshc on Mcrroami, e

Orleans, LA, 9-14, 27-29 September 1976.

Ecswell, F.R., hatJo2ted Testinq of PDIgital Assemblies and S usss
Sefriconductor Integrat ed Circuit Processing and Production Conference
(Abstracts) , Anaheim, CALIF., 47. 2PP, Industrial and Science
Conference Management, 9-11 February 1S71.

Eouricius, W.G., Procedure for Testin Mirrorm :ie)
Sptember 1974, lC-5017.

BrnD., Alqgbraic Simulation Between Parallel Pro rams, June 1973,
P-7206.

Erand, D., Joyner, W.H.,Jr., Verfication of Protocols usinq fymholic
Execution, Computer Netuorks (Netherlands), Vol. 2, Nc. 4-5, 351-6Z,
2C.

Eudkowski, S., Dembinski, P., Firmware Versus Software Verification,
trcceedings of the 11th Annual !icroprcgramming Workshop, Pacific
Grove, CA., 119-27, 19-22 Nov. 1978.

Burr, William E., Fuller, Samuel H., Shaman, Paul S., lamt, David A.,
SpM~e Fai.j Arcitecture Selection Ccmirittee Final Peporj. Volume

III, Evaluation of Computer Architecture via Test Programs.

Carter, I.C., Joyner, W.H.,Jr., Brand, r., Ellozy, H., Wol:,-, J.L., An
1.~joe lystem to Vjjf hsgembled o .K rams, FTCS-8, the Eight annual
Irternaticnal Conference on Fault-Tolerant Computing, Toulouse,
France, 165-70, 21-23, June 1S78.

-. d6. F-i

y21~~~~.AL~ UFCI I~ aLv 2 ,1&

rartcr, 6.C. . ki~ c;y, !4.A. 0 r Cyr I, ~.Ir. L e E mar., ~
z.C-CriQUfS :OL ,ICL~j 1c cIa VaIdatiOr., !~t~CCrit y II. F I(ctrcr~jC f1ilt

Carter, .C, JOY UE I, .H. I eem a n, C.Y., TechrigjfEs to lf
14.icrocole Validation, lcl', International Fvuposiua cr Fau--t- Iolerant
Ccuruting, PittsuurgL, PA, 19f, 21-23, June 11976.

Carter, W.C., Joyner, W.H., Brand, E., icroFjrogr a1 Verificatir.
Ccnsilered Necessary, Arril 1C78, PC-7CE3-.

Carte:, V.C. , Joyner, W. F., Ellczy, H. A., leeman, C.E. , lechLIJige for
Picror rogra~i yVadation, Jan uary 1q77, FC-E2E 1.

Case, G.P., A Statistical Method for 7est Secuence 1valuatioL, 12-tLh-
£esign Autonmaticnz Conference, Bostcr, MASS., 257-8, 2---25 Junje 1975.

Cleput, 6.M., Conference Chairman Proceedings ct tr'e 4tL
International Syi!pgsium on Ccmruter Hard'.are Descriktion La2 iSs
CctcbEr 1979, IEEE Catalogue No. 79Ci1436-SC.

remhinski, P., Budkowski, S., An Introduction to tle Ver2.ficaticn
Oriented Microjrgra.EM ing La ujg.e 'Mid1' e Proeedircs of the ith
Annual Micrcprogramming Workshop, Pacific CGrove, CA., 139-43, 19-22
Ncvember 1978.

rurgavich, 3.3., Granieri, M.11., Vccdlpine., O.3., ATE system
Architecture Alternatives, Autotesting '78, Internaticrai Autocatic
Testing Conference, San Liegc, CA., 199-209, 28-30 Nov. 1S7E.

flspas, B., Green, M.W., Levitt, R.N., Valdinger, 1i.Z., !LEsEarch in
Interactive Pr cgjjMkProving Techniaufs, !!ay 1972, Stanforc £hesearch
Institute, Menlo Park, California.

Evangelisti, C.J., Goertzel, G., lesser, J.D., Ofik, F., Structured
Fecuential Machine Cornj.Eison, IBM Technical DisclcsurE Fulletin, Vol.
20, No. 6. 2500-7. .-

Tchi, M.E., Central Processor Diagno.sis ty Functacni, tigest of Papers
flom the 1972 International Symposiuir cr fault-7olerant Coniputingc,
Newtcr, MASS., 62-7, 2, 19-21 June 1972.

Guffin, F.E., Microdiagnostics for the Standard CcffuU.ti; gLP-900
Processor, IEEE Trans. Ccrput, Vol. 20, 1 o.*7. e03-6.

Pedeman, 111,II, Progqram to2 Ccurt Ficrocode Instructions, IBM
Technical Lisclosure Bulletin, Vcl. 16, Nc. 1. 290-1. 0.

Fcebne, H., Filcty, F., Desigfl je.rification at the Re~gister Transfer
lancuaae Level, IEEE Trans. Comput., Vcl.O-2S, No.9. 861-7. 17.

inagaki, M., Test anI r i~gnsis Progra Generation Using
ticroinstructiop Nec. Fies, and revep. (Japan) No. 26. 35-52. 6.

E176175~ FINAL REPCP1 Fetruary 29, 1980

Jacotcwit -, H., Automatic Generation of Tests ard Eiagnostics for
C r'j Plu,-Ins and Ccm.Euter Siy.t ms, Computer Desigrer's Conterence
ar.! Exhibition (abstracts), Anaheim, Calif., Chicago, Ill., 39, 2PP,
Industrial and science Conference Management, Industrial and Science
Ccnference Management. 19-21 January 1S71.

Jcyner, W.H., Birman, A., Provinq Simulation Petween Pr"La_.s, 21
Cctoher 1S74, RC5091.

icyner, W.H., Carter, W.C., Brand, r., _sing MAfhine Eescriptlons in
rccrar3 Verification, RC-6922

JcvrcEr, W.H., Leeman, G.B., Carter, W.C., Autcmated Verification of
!ictcrro a __s, April 1976, RC-5941

Jcyner, W.H., Jr., Carter, W.C., Leeman, G.E., Jr., Autcmated Proofs
Cf licro nrja Correctness, 9th Annual Workshop on Microprogramming,

New Orleans, LA., 51-5, 27-29 September 197.

Karnes, P.E., Carter, W.A., Ccmjutr esin Verificaticn via Software
Sirulaticn, 74Z-00458.

Fatter, O.E., Jr., Chadwick, R.S., Processor Testatility Through
!"icrodiaqnostics, Proceedings of the National Aerospace Electronics
Ccrference 1973, Dayton, Ohio, 426-33, 14-16 May 1973.

LEeman, G.B., A Method fcr Provinq E ~uivalence of Proqrams, 10

Septembei: 1974., RC5022.

leeman, G.5., Carter, W.C., Birman, A., Micro Proqram Validation: A
NEw Aid to Computer Desiqn Verification.

teEman, G.B., Some Problems in Certifyin Micro Proqams, 5 May 1979,
IEEE Transactions on Computers.

Leeman, G.B., Micro PErogam Certification: The Extended S-Machine
exeriment, 4 December 1973, RC4640.

McCaskill, a., Wr__nq Out 4-Pit !Mp Slicas with Alcrithmic Pattern

Generation, ELECT.FON, Des., Vol. 25, No.l0. 74-7. 2.

Mcronnell-Douglas Astronautics Co., Houston, Tex., Simulation
Verification Techn.sques Study: Simulaticn Self-Test EardwaLe Design
and Techniques Report, 1974, 487P.

Patterson, C., Verification of Mictorgrorams.
Cakiey, J.., olic Execution of Formal Machine Descriptions, April

1S.79, CMU-CS-79-117, Carnegie Mellon University, Pittsturg, PA.

Famamoor4ny, C.V., Chang, L.C., §dsteM Model inq and Testing Procedures
for Microdiagnostics, IEEE Trans. Ccmpvt., 'oV. G-21, ic.11. 1169-83.

Pamamcorthy, C.V., Shankar, K.S., Autcmatic Testing for the

-As

6176175A FINAL REPCPI Feruary 29, 1980

Correctness and Equivalence of Icofree icrcplro.2ams IEEE Trans.
Ccirput. Vcl. 0-23, No.8. 768-82. 1-

Feifer, Donald J., Microrroqram Verificaticr and Validaticn, Aerospace
Ccrp. P1 Secundo Califorria Development Operations

toach, C., Saucier, G., Lebrun, J., Frccessor Testability and Dez;i-
Ccnsequences, IEEE Trans. Comput., Vol.0-2E, No. 6. 645-E2. 12.

Fobach, C., Saucier, G., Bynamic Testing 2f Control Units, ItEE Trans.
Ccupuc., Voi.0-27, No.7. 617-23. 12.

Rchach, C., Saucier, G., Effective Test Methods for Central Processinq
Units, 1975 International Symposium cn Fault-7clerant Computing,
Diqest of Papers, Paris, France, 176-81,18-20 June 1S75.

Pose, C.W., Desiqn Systems-A Five Year View, 12th IEEE Computers
Scciety International Conference on Coryuters the bext 5 Years,
(ricest of Papers), San Francisco, Calif., 190-3, 2U-2E fetruary 1976.

Schcormaker, P.B., Renglirski, T.H., Simulation Verification
SEchniques Study

Schwomeyer, W.A., Verification of a Virtual Storaqe Architecture on a
_icrorogKammed Cogmpte.r, AFIPS Conference Proceedircs Vcl.L42 1973
National Computer Composition and Exposition, 401-6, 4-E June 1973.

Stclov, S.E., Gaelic Grumman Aerosrace njqineerin LanSuaae for
irstructional Checkout, ASSC 72 Symposium Pecord, Philadelphia, PL.,
New York, 16b-72, 13-15 November 1S72.

Varney, B.C., Groundwater, N.F. Criteria for Architecture
Verification, 8/78 IEEE.

iagner, Todd Jeffry, Hardware Verification Stanford University,
Calilornia, Department of Computer Science.

16clter, R.H., Publications Chairman, AUTO7ESTCCE 7S International
Automatic Testing Ccnference, September 1979, IEEE Publishing
Services, New York, NY.

AN/IK-15a Diqital Processor Prime Item reveloqmen t Sj.p cification, 16

Tetruary 1979.

ANZAYK-I-A Acceptance Test Proqram User's ranual.

AZAYF-5A Diqital Processor, Part I, _lg_ 11, 1 April 1979.

ANZYK-A Product Specification, Part 1I, 10 August 1979.

ISF Primer ±or the Architecture Pesearcl Facility, The Naval Research
Ia oratory, January 1976.

c._ybolic Validation Algorithm Eguivalence System Manual.

F-4

I

I

